Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 a + 9 + \left(11 a + 1\right)\cdot 13 + \left(7 a + 5\right)\cdot 13^{2} + 11 a\cdot 13^{3} + \left(11 a + 12\right)\cdot 13^{4} + \left(4 a + 7\right)\cdot 13^{5} + \left(9 a + 12\right)\cdot 13^{6} + \left(11 a + 6\right)\cdot 13^{7} + 10\cdot 13^{8} + \left(8 a + 1\right)\cdot 13^{9} + \left(6 a + 5\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 8 + 4\cdot 13 + 6\cdot 13^{2} + 7\cdot 13^{3} + 12\cdot 13^{4} + 11\cdot 13^{5} + 7\cdot 13^{6} + 2\cdot 13^{7} + 2\cdot 13^{8} + 13^{9} + 6\cdot 13^{10} +O\left(13^{ 11 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 a + 11 + \left(4 a + 12\right)\cdot 13 + \left(11 a + 2\right)\cdot 13^{2} + \left(7 a + 8\right)\cdot 13^{3} + \left(10 a + 11\right)\cdot 13^{4} + \left(a + 10\right)\cdot 13^{5} + \left(9 a + 2\right)\cdot 13^{6} + \left(4 a + 2\right)\cdot 13^{7} + \left(9 a + 4\right)\cdot 13^{8} + 4\cdot 13^{9} + \left(5 a + 4\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 10 a + 7 + \left(11 a + 9\right)\cdot 13 + \left(7 a + 11\right)\cdot 13^{2} + \left(11 a + 8\right)\cdot 13^{3} + 11 a\cdot 13^{4} + \left(4 a + 12\right)\cdot 13^{5} + \left(9 a + 8\right)\cdot 13^{6} + \left(11 a + 3\right)\cdot 13^{7} + \left(8 a + 4\right)\cdot 13^{9} + \left(6 a + 9\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 3 a + 4 + \left(a + 11\right)\cdot 13 + \left(5 a + 7\right)\cdot 13^{2} + \left(a + 12\right)\cdot 13^{3} + a\cdot 13^{4} + \left(8 a + 5\right)\cdot 13^{5} + 3 a\cdot 13^{6} + \left(a + 6\right)\cdot 13^{7} + \left(12 a + 2\right)\cdot 13^{8} + \left(4 a + 11\right)\cdot 13^{9} + \left(6 a + 7\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 5 + 8\cdot 13 + 6\cdot 13^{2} + 5\cdot 13^{3} + 13^{5} + 5\cdot 13^{6} + 10\cdot 13^{7} + 10\cdot 13^{8} + 11\cdot 13^{9} + 6\cdot 13^{10} +O\left(13^{ 11 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 9 a + 2 + 8 a\cdot 13 + \left(a + 10\right)\cdot 13^{2} + \left(5 a + 4\right)\cdot 13^{3} + \left(2 a + 1\right)\cdot 13^{4} + \left(11 a + 2\right)\cdot 13^{5} + \left(3 a + 10\right)\cdot 13^{6} + \left(8 a + 10\right)\cdot 13^{7} + \left(3 a + 8\right)\cdot 13^{8} + \left(12 a + 8\right)\cdot 13^{9} + \left(7 a + 8\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 3 a + 6 + \left(a + 3\right)\cdot 13 + \left(5 a + 1\right)\cdot 13^{2} + \left(a + 4\right)\cdot 13^{3} + \left(a + 12\right)\cdot 13^{4} + 8 a\cdot 13^{5} + \left(3 a + 4\right)\cdot 13^{6} + \left(a + 9\right)\cdot 13^{7} + \left(12 a + 12\right)\cdot 13^{8} + \left(4 a + 8\right)\cdot 13^{9} + \left(6 a + 3\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,5,7)(2,4,6,8)$ |
| $(2,7)(3,6)(4,8)$ |
| $(2,3,4)(6,7,8)$ |
| $(1,5)(2,6)(3,7)(4,8)$ |
| $(1,6,5,2)(3,4,7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,5)(2,6)(3,7)(4,8)$ |
$-2$ |
$-2$ |
| $12$ |
$2$ |
$(2,7)(3,6)(4,8)$ |
$0$ |
$0$ |
| $8$ |
$3$ |
$(1,4,7)(3,5,8)$ |
$-1$ |
$-1$ |
| $6$ |
$4$ |
$(1,3,5,7)(2,4,6,8)$ |
$0$ |
$0$ |
| $8$ |
$6$ |
$(1,6,8,5,2,4)(3,7)$ |
$1$ |
$1$ |
| $6$ |
$8$ |
$(1,3,8,6,5,7,4,2)$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
| $6$ |
$8$ |
$(1,7,8,2,5,3,4,6)$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.