Properties

Label 2.2e7_19.24t22.3
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{7} \cdot 19 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$2432= 2^{7} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 10 x^{4} - 24 x^{2} - 19 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 11\cdot 13 + 10\cdot 13^{2} + 8\cdot 13^{3} + 3\cdot 13^{4} + 11\cdot 13^{5} + 5\cdot 13^{6} + 8\cdot 13^{7} + 3\cdot 13^{8} + 10\cdot 13^{9} + 10\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 3 + \left(2 a + 2\right)\cdot 13 + \left(4 a + 12\right)\cdot 13^{2} + \left(9 a + 3\right)\cdot 13^{3} + \left(6 a + 1\right)\cdot 13^{4} + \left(7 a + 6\right)\cdot 13^{5} + \left(4 a + 1\right)\cdot 13^{6} + \left(2 a + 1\right)\cdot 13^{7} + \left(5 a + 5\right)\cdot 13^{8} + \left(5 a + 6\right)\cdot 13^{9} + \left(12 a + 9\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 9 + \left(4 a + 4\right)\cdot 13 + \left(4 a + 9\right)\cdot 13^{2} + \left(5 a + 8\right)\cdot 13^{3} + \left(6 a + 3\right)\cdot 13^{4} + \left(9 a + 12\right)\cdot 13^{5} + \left(9 a + 10\right)\cdot 13^{6} + \left(11 a + 5\right)\cdot 13^{7} + \left(12 a + 4\right)\cdot 13^{8} + \left(9 a + 7\right)\cdot 13^{9} + \left(a + 4\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 7 + \left(8 a + 11\right)\cdot 13 + \left(8 a + 8\right)\cdot 13^{2} + \left(7 a + 9\right)\cdot 13^{3} + \left(6 a + 4\right)\cdot 13^{4} + \left(3 a + 2\right)\cdot 13^{5} + \left(3 a + 11\right)\cdot 13^{6} + \left(a + 7\right)\cdot 13^{7} + 5\cdot 13^{8} + \left(3 a + 4\right)\cdot 13^{9} + \left(11 a + 9\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 12 + 13 + 2\cdot 13^{2} + 4\cdot 13^{3} + 9\cdot 13^{4} + 13^{5} + 7\cdot 13^{6} + 4\cdot 13^{7} + 9\cdot 13^{8} + 2\cdot 13^{9} + 2\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 10 + \left(10 a + 10\right)\cdot 13 + 8 a\cdot 13^{2} + \left(3 a + 9\right)\cdot 13^{3} + \left(6 a + 11\right)\cdot 13^{4} + \left(5 a + 6\right)\cdot 13^{5} + \left(8 a + 11\right)\cdot 13^{6} + \left(10 a + 11\right)\cdot 13^{7} + \left(7 a + 7\right)\cdot 13^{8} + \left(7 a + 6\right)\cdot 13^{9} + 3\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 2 a + 4 + \left(8 a + 8\right)\cdot 13 + \left(8 a + 3\right)\cdot 13^{2} + \left(7 a + 4\right)\cdot 13^{3} + \left(6 a + 9\right)\cdot 13^{4} + 3 a\cdot 13^{5} + \left(3 a + 2\right)\cdot 13^{6} + \left(a + 7\right)\cdot 13^{7} + 8\cdot 13^{8} + \left(3 a + 5\right)\cdot 13^{9} + \left(11 a + 8\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 11 a + 6 + \left(4 a + 1\right)\cdot 13 + \left(4 a + 4\right)\cdot 13^{2} + \left(5 a + 3\right)\cdot 13^{3} + \left(6 a + 8\right)\cdot 13^{4} + \left(9 a + 10\right)\cdot 13^{5} + \left(9 a + 1\right)\cdot 13^{6} + \left(11 a + 5\right)\cdot 13^{7} + \left(12 a + 7\right)\cdot 13^{8} + \left(9 a + 8\right)\cdot 13^{9} + \left(a + 3\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,7)(2,4,6,8)$
$(1,6)(2,5)(3,7)$
$(1,8,5,4)(2,3,6,7)$
$(1,3,2)(5,7,6)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $-2$ $-2$
$12$ $2$ $(1,6)(2,5)(3,7)$ $0$ $0$
$8$ $3$ $(1,8,7)(3,5,4)$ $-1$ $-1$
$6$ $4$ $(1,8,5,4)(2,3,6,7)$ $0$ $0$
$8$ $6$ $(1,5)(2,3,4,6,7,8)$ $1$ $1$
$6$ $8$ $(1,7,6,8,5,3,2,4)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,3,6,4,5,7,2,8)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.