Properties

Label 2.2e6_7.8t17.1c2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{6} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$448= 2^{6} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} + 3 x^{6} + 3 x^{4} + 2 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.2e4_7.4t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 13 + 18\cdot 127 + 121\cdot 127^{2} + 22\cdot 127^{3} + 60\cdot 127^{4} + 70\cdot 127^{5} + 26\cdot 127^{6} +O\left(127^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 32 + 116\cdot 127 + 49\cdot 127^{2} + 123\cdot 127^{3} + 65\cdot 127^{4} + 93\cdot 127^{5} + 91\cdot 127^{6} +O\left(127^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 34 + 110\cdot 127 + 28\cdot 127^{2} + 59\cdot 127^{3} + 111\cdot 127^{4} + 47\cdot 127^{5} + 121\cdot 127^{6} +O\left(127^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 51 + 17\cdot 127 + 8\cdot 127^{2} + 24\cdot 127^{3} + 123\cdot 127^{4} + 64\cdot 127^{5} + 83\cdot 127^{6} +O\left(127^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 76 + 109\cdot 127 + 118\cdot 127^{2} + 102\cdot 127^{3} + 3\cdot 127^{4} + 62\cdot 127^{5} + 43\cdot 127^{6} +O\left(127^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 93 + 16\cdot 127 + 98\cdot 127^{2} + 67\cdot 127^{3} + 15\cdot 127^{4} + 79\cdot 127^{5} + 5\cdot 127^{6} +O\left(127^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 95 + 10\cdot 127 + 77\cdot 127^{2} + 3\cdot 127^{3} + 61\cdot 127^{4} + 33\cdot 127^{5} + 35\cdot 127^{6} +O\left(127^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 114 + 108\cdot 127 + 5\cdot 127^{2} + 104\cdot 127^{3} + 66\cdot 127^{4} + 56\cdot 127^{5} + 100\cdot 127^{6} +O\left(127^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,8,5)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,8)(4,5)$
$(1,5,8,4)(2,6,7,3)$
$(1,3,5,2,8,6,4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,8)(4,5)$$0$
$4$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$1$$4$$(1,5,8,4)(2,6,7,3)$$2 \zeta_{4}$
$1$$4$$(1,4,8,5)(2,3,7,6)$$-2 \zeta_{4}$
$2$$4$$(1,4,8,5)$$-\zeta_{4} + 1$
$2$$4$$(1,5,8,4)$$\zeta_{4} + 1$
$2$$4$$(1,5,8,4)(2,7)(3,6)$$\zeta_{4} - 1$
$2$$4$$(1,4,8,5)(2,7)(3,6)$$-\zeta_{4} - 1$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$4$$(1,6,8,3)(2,5,7,4)$$0$
$4$$8$$(1,3,5,2,8,6,4,7)$$0$
$4$$8$$(1,2,4,3,8,7,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.