Properties

Label 2.2e6_5e2.8t7.4c1
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{6} \cdot 5^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$1600= 2^{6} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} + 10 x^{6} + 25 x^{4} + 20 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even
Determinant: 1.2e3_5.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 10 + 40\cdot 79 + 15\cdot 79^{2} + 69\cdot 79^{3} + 27\cdot 79^{4} + 66\cdot 79^{5} + 40\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 18 + 27\cdot 79 + 29\cdot 79^{2} + 8\cdot 79^{3} + 2\cdot 79^{4} + 57\cdot 79^{5} + 64\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 21 + 22\cdot 79 + 79^{2} + 61\cdot 79^{3} + 31\cdot 79^{4} + 2\cdot 79^{5} + 40\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 28 + 46\cdot 79 + 13\cdot 79^{2} + 46\cdot 79^{3} + 67\cdot 79^{4} + 23\cdot 79^{5} + 61\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 51 + 32\cdot 79 + 65\cdot 79^{2} + 32\cdot 79^{3} + 11\cdot 79^{4} + 55\cdot 79^{5} + 17\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 58 + 56\cdot 79 + 77\cdot 79^{2} + 17\cdot 79^{3} + 47\cdot 79^{4} + 76\cdot 79^{5} + 38\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 61 + 51\cdot 79 + 49\cdot 79^{2} + 70\cdot 79^{3} + 76\cdot 79^{4} + 21\cdot 79^{5} + 14\cdot 79^{6} +O\left(79^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 69 + 38\cdot 79 + 63\cdot 79^{2} + 9\cdot 79^{3} + 51\cdot 79^{4} + 12\cdot 79^{5} + 38\cdot 79^{6} +O\left(79^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,5,7,8,3,4,2)$
$(1,8)(4,5)$
$(2,7)(3,6)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,8)(4,5)$$0$
$1$$4$$(1,5,8,4)(2,6,7,3)$$2 \zeta_{4}$
$1$$4$$(1,4,8,5)(2,3,7,6)$$-2 \zeta_{4}$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$2$$8$$(1,6,5,7,8,3,4,2)$$0$
$2$$8$$(1,7,4,6,8,2,5,3)$$0$
$2$$8$$(1,3,4,7,8,6,5,2)$$0$
$2$$8$$(1,7,5,3,8,2,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.