Properties

Label 2.2e6_5e2.8t7.3
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{6} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$1600= 2^{6} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 15 x^{4} + 10 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 18 + 24\cdot 59 + 25\cdot 59^{2} + 3\cdot 59^{3} + 46\cdot 59^{4} + 18\cdot 59^{5} + 14\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 20 + 17\cdot 59 + 19\cdot 59^{2} + 6\cdot 59^{3} + 46\cdot 59^{4} + 10\cdot 59^{5} + 54\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 23 + 45\cdot 59 + 21\cdot 59^{2} + 59^{3} + 41\cdot 59^{4} + 4\cdot 59^{5} + 40\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 24 + 31\cdot 59 + 55\cdot 59^{2} + 56\cdot 59^{3} + 5\cdot 59^{4} + 44\cdot 59^{5} + 23\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 35 + 27\cdot 59 + 3\cdot 59^{2} + 2\cdot 59^{3} + 53\cdot 59^{4} + 14\cdot 59^{5} + 35\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 36 + 13\cdot 59 + 37\cdot 59^{2} + 57\cdot 59^{3} + 17\cdot 59^{4} + 54\cdot 59^{5} + 18\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 39 + 41\cdot 59 + 39\cdot 59^{2} + 52\cdot 59^{3} + 12\cdot 59^{4} + 48\cdot 59^{5} + 4\cdot 59^{6} +O\left(59^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 41 + 34\cdot 59 + 33\cdot 59^{2} + 55\cdot 59^{3} + 12\cdot 59^{4} + 40\cdot 59^{5} + 44\cdot 59^{6} +O\left(59^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(3,6)(4,5)$
$(1,5,7,3,8,4,2,6)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(3,6)(4,5)$ $0$ $0$
$1$ $4$ $(1,7,8,2)(3,4,6,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,2,8,7)(3,5,6,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
$2$ $8$ $(1,5,7,3,8,4,2,6)$ $0$ $0$
$2$ $8$ $(1,3,2,5,8,6,7,4)$ $0$ $0$
$2$ $8$ $(1,3,7,4,8,6,2,5)$ $0$ $0$
$2$ $8$ $(1,4,2,3,8,5,7,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.