Properties

Label 2.2e6_5e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{6} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1600= 2^{6} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} + 16 x^{4} - 56 x^{2} + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 17\cdot 29 + 14\cdot 29^{2} + 29^{3} + 22\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 14\cdot 29 + 19\cdot 29^{2} + 27\cdot 29^{3} + 14\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 5\cdot 29 + 25\cdot 29^{2} + 8\cdot 29^{3} + 19\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 + 2\cdot 29 + 29^{2} + 6\cdot 29^{3} + 12\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 + 26\cdot 29 + 27\cdot 29^{2} + 22\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 + 23\cdot 29 + 3\cdot 29^{2} + 20\cdot 29^{3} + 9\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 22 + 14\cdot 29 + 9\cdot 29^{2} + 29^{3} + 14\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 27 + 11\cdot 29 + 14\cdot 29^{2} + 27\cdot 29^{3} + 6\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3,7,5)(2,4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,3,7,5)(2,4,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.