Properties

Label 2.2e6_5_29.4t3.19
Dimension 2
Group $D_4$
Conductor $ 2^{6} \cdot 5 \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9280= 2^{6} \cdot 5 \cdot 29 $
Artin number field: Splitting field of $f= x^{8} + 30 x^{6} + 228 x^{4} + 480 x^{2} + 256 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 21 + 112\cdot 139 + 86\cdot 139^{2} + 14\cdot 139^{3} + 74\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 54 + 106\cdot 139 + 59\cdot 139^{2} + 43\cdot 139^{3} + 110\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 + 91\cdot 139 + 9\cdot 139^{2} + 13\cdot 139^{3} + 120\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 67 + 7\cdot 139 + 136\cdot 139^{2} + 90\cdot 139^{3} + 132\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 72 + 131\cdot 139 + 2\cdot 139^{2} + 48\cdot 139^{3} + 6\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 73 + 47\cdot 139 + 129\cdot 139^{2} + 125\cdot 139^{3} + 18\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 85 + 32\cdot 139 + 79\cdot 139^{2} + 95\cdot 139^{3} + 28\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 118 + 26\cdot 139 + 52\cdot 139^{2} + 124\cdot 139^{3} + 64\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.