Properties

Label 2.2e6_5_19.4t3.10
Dimension 2
Group $D_4$
Conductor $ 2^{6} \cdot 5 \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6080= 2^{6} \cdot 5 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} + 20 x^{6} + 83 x^{4} + 20 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 12\cdot 31 + 25\cdot 31^{2} + 22\cdot 31^{3} + 29\cdot 31^{4} + 13\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 + 17\cdot 31 + 7\cdot 31^{2} + 26\cdot 31^{3} + 10\cdot 31^{4} + 11\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 6 + 29\cdot 31 + 3\cdot 31^{2} + 26\cdot 31^{3} + 20\cdot 31^{4} + 23\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 15 + 18\cdot 31 + 11\cdot 31^{2} + 30\cdot 31^{3} + 26\cdot 31^{4} + 3\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 16 + 12\cdot 31 + 19\cdot 31^{2} + 4\cdot 31^{4} + 27\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 25 + 31 + 27\cdot 31^{2} + 4\cdot 31^{3} + 10\cdot 31^{4} + 7\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 26 + 13\cdot 31 + 23\cdot 31^{2} + 4\cdot 31^{3} + 20\cdot 31^{4} + 19\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 29 + 18\cdot 31 + 5\cdot 31^{2} + 8\cdot 31^{3} + 31^{4} + 17\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.