Error: table mf_hecke_newspace_traces does not exist
Basic invariants
| Dimension: | $2$ |
| Group: | $D_{4}$ |
| Conductor: | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 4.0.1280.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{4}$ |
| Parity: | odd |
| Projective image: | $C_2^2$ |
| Projective field: | Galois closure of \(\Q(i, \sqrt{5})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 14 + 9\cdot 61 + 3\cdot 61^{2} + 36\cdot 61^{3} + 46\cdot 61^{4} +O(61^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 28 + 17\cdot 61 + 46\cdot 61^{2} + 35\cdot 61^{3} + 4\cdot 61^{4} +O(61^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 33 + 43\cdot 61 + 14\cdot 61^{2} + 25\cdot 61^{3} + 56\cdot 61^{4} +O(61^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 47 + 51\cdot 61 + 57\cdot 61^{2} + 24\cdot 61^{3} + 14\cdot 61^{4} +O(61^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |