Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 4\cdot 23 + 2\cdot 23^{2} + 17\cdot 23^{3} + 16\cdot 23^{4} + 14\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 a + 8 + \left(12 a + 3\right)\cdot 23 + \left(22 a + 19\right)\cdot 23^{2} + \left(13 a + 5\right)\cdot 23^{3} + \left(18 a + 8\right)\cdot 23^{4} + \left(11 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 a + 7 + \left(12 a + 22\right)\cdot 23 + \left(22 a + 16\right)\cdot 23^{2} + \left(13 a + 11\right)\cdot 23^{3} + \left(18 a + 14\right)\cdot 23^{4} + \left(11 a + 1\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 22 + 18\cdot 23 + 20\cdot 23^{2} + 5\cdot 23^{3} + 6\cdot 23^{4} + 8\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 19 a + 15 + \left(10 a + 19\right)\cdot 23 + 3\cdot 23^{2} + \left(9 a + 17\right)\cdot 23^{3} + \left(4 a + 14\right)\cdot 23^{4} + \left(11 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 19 a + 16 + 10 a\cdot 23 + 6\cdot 23^{2} + \left(9 a + 11\right)\cdot 23^{3} + \left(4 a + 8\right)\cdot 23^{4} + \left(11 a + 21\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,6)(3,5)$ |
| $(1,2)(3,6)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
| $3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
| $3$ | $2$ | $(1,3)(4,6)$ | $0$ |
| $2$ | $3$ | $(1,5,3)(2,6,4)$ | $-1$ |
| $2$ | $6$ | $(1,6,5,4,3,2)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.