Properties

Label 2.2e6_3e5.6t3.6
Dimension 2
Group $D_{6}$
Conductor $ 2^{6} \cdot 3^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$15552= 2^{6} \cdot 3^{5} $
Artin number field: Splitting field of $f= x^{6} - 24 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 4\cdot 23 + 2\cdot 23^{2} + 17\cdot 23^{3} + 16\cdot 23^{4} + 14\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 8 + \left(12 a + 3\right)\cdot 23 + \left(22 a + 19\right)\cdot 23^{2} + \left(13 a + 5\right)\cdot 23^{3} + \left(18 a + 8\right)\cdot 23^{4} + \left(11 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 7 + \left(12 a + 22\right)\cdot 23 + \left(22 a + 16\right)\cdot 23^{2} + \left(13 a + 11\right)\cdot 23^{3} + \left(18 a + 14\right)\cdot 23^{4} + \left(11 a + 1\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 22 + 18\cdot 23 + 20\cdot 23^{2} + 5\cdot 23^{3} + 6\cdot 23^{4} + 8\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 15 + \left(10 a + 19\right)\cdot 23 + 3\cdot 23^{2} + \left(9 a + 17\right)\cdot 23^{3} + \left(4 a + 14\right)\cdot 23^{4} + \left(11 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 16 + 10 a\cdot 23 + 6\cdot 23^{2} + \left(9 a + 11\right)\cdot 23^{3} + \left(4 a + 8\right)\cdot 23^{4} + \left(11 a + 21\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,5)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$3$ $2$ $(1,3)(4,6)$ $0$
$2$ $3$ $(1,5,3)(2,6,4)$ $-1$
$2$ $6$ $(1,6,5,4,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.