Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 a + \left(12 a + 6\right)\cdot 17 + \left(5 a + 14\right)\cdot 17^{2} + \left(14 a + 13\right)\cdot 17^{3} + \left(14 a + 9\right)\cdot 17^{4} + \left(16 a + 7\right)\cdot 17^{5} + 10 a\cdot 17^{6} + \left(8 a + 5\right)\cdot 17^{7} + \left(13 a + 9\right)\cdot 17^{8} + \left(15 a + 16\right)\cdot 17^{9} + \left(11 a + 1\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 14 a + 3 + \left(4 a + 15\right)\cdot 17 + \left(11 a + 7\right)\cdot 17^{2} + \left(2 a + 5\right)\cdot 17^{3} + \left(2 a + 10\right)\cdot 17^{4} + 9\cdot 17^{5} + \left(6 a + 11\right)\cdot 17^{6} + \left(8 a + 2\right)\cdot 17^{7} + \left(3 a + 14\right)\cdot 17^{8} + \left(a + 1\right)\cdot 17^{9} + \left(5 a + 15\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 14 a + 10 + \left(11 a + 9\right)\cdot 17 + \left(4 a + 3\right)\cdot 17^{2} + \left(2 a + 1\right)\cdot 17^{3} + \left(7 a + 6\right)\cdot 17^{4} + \left(16 a + 12\right)\cdot 17^{5} + \left(13 a + 9\right)\cdot 17^{6} + \left(16 a + 15\right)\cdot 17^{7} + \left(5 a + 13\right)\cdot 17^{8} + \left(a + 10\right)\cdot 17^{9} + \left(5 a + 6\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 11 + 17 + 14\cdot 17^{2} + 7\cdot 17^{3} + 10\cdot 17^{4} + 16\cdot 17^{5} + 13\cdot 17^{6} + 8\cdot 17^{7} + 9\cdot 17^{8} + 11\cdot 17^{9} + 7\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 14 a + \left(4 a + 11\right)\cdot 17 + \left(11 a + 2\right)\cdot 17^{2} + \left(2 a + 3\right)\cdot 17^{3} + \left(2 a + 7\right)\cdot 17^{4} + 9\cdot 17^{5} + \left(6 a + 16\right)\cdot 17^{6} + \left(8 a + 11\right)\cdot 17^{7} + \left(3 a + 7\right)\cdot 17^{8} + a\cdot 17^{9} + \left(5 a + 15\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 3 a + 14 + \left(12 a + 1\right)\cdot 17 + \left(5 a + 9\right)\cdot 17^{2} + \left(14 a + 11\right)\cdot 17^{3} + \left(14 a + 6\right)\cdot 17^{4} + \left(16 a + 7\right)\cdot 17^{5} + \left(10 a + 5\right)\cdot 17^{6} + \left(8 a + 14\right)\cdot 17^{7} + \left(13 a + 2\right)\cdot 17^{8} + \left(15 a + 15\right)\cdot 17^{9} + \left(11 a + 1\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 3 a + 7 + \left(5 a + 7\right)\cdot 17 + \left(12 a + 13\right)\cdot 17^{2} + \left(14 a + 15\right)\cdot 17^{3} + \left(9 a + 10\right)\cdot 17^{4} + 4\cdot 17^{5} + \left(3 a + 7\right)\cdot 17^{6} + 17^{7} + \left(11 a + 3\right)\cdot 17^{8} + \left(15 a + 6\right)\cdot 17^{9} + \left(11 a + 10\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 6 + 15\cdot 17 + 2\cdot 17^{2} + 9\cdot 17^{3} + 6\cdot 17^{4} + 3\cdot 17^{6} + 8\cdot 17^{7} + 7\cdot 17^{8} + 5\cdot 17^{9} + 9\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,6)(3,5)$ |
| $(1,2,5,6)(3,8,7,4)$ |
| $(1,3,5,7)(2,4,6,8)$ |
| $(1,3,6)(2,5,7)$ |
| $(1,5)(2,6)(3,7)(4,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $-2$ |
| $12$ | $2$ | $(1,7)(2,6)(3,5)$ | $0$ |
| $8$ | $3$ | $(1,8,2)(4,6,5)$ | $-1$ |
| $6$ | $4$ | $(1,3,5,7)(2,4,6,8)$ | $0$ |
| $8$ | $6$ | $(1,6,8,5,2,4)(3,7)$ | $1$ |
| $6$ | $8$ | $(1,4,3,6,5,8,7,2)$ | $\zeta_{8}^{3} + \zeta_{8}$ |
| $6$ | $8$ | $(1,8,3,2,5,4,7,6)$ | $-\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.