Properties

Label 2.2e6_3e2_5e2.8t7.7c2
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$14400= 2^{6} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 120 x^{4} + 360 x^{2} + 720 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd
Determinant: 1.5.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 7 + 85\cdot 151^{2} + 76\cdot 151^{3} + 139\cdot 151^{4} + 6\cdot 151^{5} + 43\cdot 151^{6} + 145\cdot 151^{7} +O\left(151^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 15 + 42\cdot 151 + 77\cdot 151^{2} + 68\cdot 151^{3} + 106\cdot 151^{4} + 132\cdot 151^{5} + 140\cdot 151^{6} + 121\cdot 151^{7} +O\left(151^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 22 + 26\cdot 151 + 132\cdot 151^{2} + 28\cdot 151^{3} + 91\cdot 151^{4} + 108\cdot 151^{5} + 13\cdot 151^{6} + 53\cdot 151^{7} +O\left(151^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 65 + 151 + 21\cdot 151^{2} + 21\cdot 151^{3} + 47\cdot 151^{4} + 88\cdot 151^{5} + 144\cdot 151^{6} + 110\cdot 151^{7} +O\left(151^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 86 + 149\cdot 151 + 129\cdot 151^{2} + 129\cdot 151^{3} + 103\cdot 151^{4} + 62\cdot 151^{5} + 6\cdot 151^{6} + 40\cdot 151^{7} +O\left(151^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 129 + 124\cdot 151 + 18\cdot 151^{2} + 122\cdot 151^{3} + 59\cdot 151^{4} + 42\cdot 151^{5} + 137\cdot 151^{6} + 97\cdot 151^{7} +O\left(151^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 136 + 108\cdot 151 + 73\cdot 151^{2} + 82\cdot 151^{3} + 44\cdot 151^{4} + 18\cdot 151^{5} + 10\cdot 151^{6} + 29\cdot 151^{7} +O\left(151^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 144 + 150\cdot 151 + 65\cdot 151^{2} + 74\cdot 151^{3} + 11\cdot 151^{4} + 144\cdot 151^{5} + 107\cdot 151^{6} + 5\cdot 151^{7} +O\left(151^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(3,6)(4,5)$
$(1,5,7,6,8,4,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(3,6)(4,5)$$0$
$1$$4$$(1,7,8,2)(3,5,6,4)$$-2 \zeta_{4}$
$1$$4$$(1,2,8,7)(3,4,6,5)$$2 \zeta_{4}$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
$2$$8$$(1,5,7,6,8,4,2,3)$$0$
$2$$8$$(1,6,2,5,8,3,7,4)$$0$
$2$$8$$(1,5,2,3,8,4,7,6)$$0$
$2$$8$$(1,3,7,5,8,6,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.