Properties

Label 2.2e6_3e2_5e2.8t7.5c2
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$14400= 2^{6} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 30 x^{6} + 240 x^{4} - 720 x^{2} + 720 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even
Determinant: 1.2e2_5.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 5 + 16\cdot 61 + 22\cdot 61^{2} + 51\cdot 61^{3} + 10\cdot 61^{4} + 56\cdot 61^{5} + 40\cdot 61^{7} + 46\cdot 61^{8} + 11\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 14 + 36\cdot 61 + 30\cdot 61^{2} + 30\cdot 61^{3} + 49\cdot 61^{4} + 9\cdot 61^{5} + 37\cdot 61^{6} + 23\cdot 61^{7} + 59\cdot 61^{8} + 9\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 18 + 25\cdot 61 + 5\cdot 61^{2} + 2\cdot 61^{3} + 55\cdot 61^{4} + 46\cdot 61^{5} + 28\cdot 61^{6} + 57\cdot 61^{7} + 60\cdot 61^{8} + 60\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 20 + 44\cdot 61 + 11\cdot 61^{2} + 43\cdot 61^{3} + 13\cdot 61^{4} + 38\cdot 61^{5} + 13\cdot 61^{6} + 29\cdot 61^{7} + 35\cdot 61^{8} + 30\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 41 + 16\cdot 61 + 49\cdot 61^{2} + 17\cdot 61^{3} + 47\cdot 61^{4} + 22\cdot 61^{5} + 47\cdot 61^{6} + 31\cdot 61^{7} + 25\cdot 61^{8} + 30\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 43 + 35\cdot 61 + 55\cdot 61^{2} + 58\cdot 61^{3} + 5\cdot 61^{4} + 14\cdot 61^{5} + 32\cdot 61^{6} + 3\cdot 61^{7} +O\left(61^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 47 + 24\cdot 61 + 30\cdot 61^{2} + 30\cdot 61^{3} + 11\cdot 61^{4} + 51\cdot 61^{5} + 23\cdot 61^{6} + 37\cdot 61^{7} + 61^{8} + 51\cdot 61^{9} +O\left(61^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 56 + 44\cdot 61 + 38\cdot 61^{2} + 9\cdot 61^{3} + 50\cdot 61^{4} + 4\cdot 61^{5} + 60\cdot 61^{6} + 20\cdot 61^{7} + 14\cdot 61^{8} + 49\cdot 61^{9} +O\left(61^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,5,6,8,2,4,3)$
$(1,5,8,4)(2,6,7,3)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(2,7)(3,6)$$0$
$1$$4$$(1,5,8,4)(2,3,7,6)$$-2 \zeta_{4}$
$1$$4$$(1,4,8,5)(2,6,7,3)$$2 \zeta_{4}$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$2$$8$$(1,7,5,6,8,2,4,3)$$0$
$2$$8$$(1,6,4,7,8,3,5,2)$$0$
$2$$8$$(1,6,5,2,8,3,4,7)$$0$
$2$$8$$(1,2,4,6,8,7,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.