Properties

Label 2.2e6_3e2_5e2.8t7.1
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$14400= 2^{6} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 30 x^{6} + 225 x^{4} - 540 x^{2} + 405 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 5 + 13\cdot 41 + 27\cdot 41^{2} + 10\cdot 41^{3} + 41^{4} + 15\cdot 41^{5} + 20\cdot 41^{7} + 28\cdot 41^{8} + 27\cdot 41^{9} + 30\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 7 + 41 + 27\cdot 41^{2} + 9\cdot 41^{3} + 27\cdot 41^{4} + 19\cdot 41^{5} + 24\cdot 41^{6} + 36\cdot 41^{7} + 23\cdot 41^{8} + 25\cdot 41^{9} + 15\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 13 + 17\cdot 41 + 32\cdot 41^{2} + 9\cdot 41^{3} + 10\cdot 41^{4} + 20\cdot 41^{5} + 35\cdot 41^{6} + 5\cdot 41^{7} + 31\cdot 41^{8} + 16\cdot 41^{9} + 8\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 19 + 36\cdot 41 + 41^{2} + 40\cdot 41^{3} + 3\cdot 41^{4} + 33\cdot 41^{5} + 30\cdot 41^{6} + 5\cdot 41^{7} + 40\cdot 41^{8} + 14\cdot 41^{9} + 5\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 22 + 4\cdot 41 + 39\cdot 41^{2} + 37\cdot 41^{4} + 7\cdot 41^{5} + 10\cdot 41^{6} + 35\cdot 41^{7} + 26\cdot 41^{9} + 35\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 28 + 23\cdot 41 + 8\cdot 41^{2} + 31\cdot 41^{3} + 30\cdot 41^{4} + 20\cdot 41^{5} + 5\cdot 41^{6} + 35\cdot 41^{7} + 9\cdot 41^{8} + 24\cdot 41^{9} + 32\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 34 + 39\cdot 41 + 13\cdot 41^{2} + 31\cdot 41^{3} + 13\cdot 41^{4} + 21\cdot 41^{5} + 16\cdot 41^{6} + 4\cdot 41^{7} + 17\cdot 41^{8} + 15\cdot 41^{9} + 25\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 36 + 27\cdot 41 + 13\cdot 41^{2} + 30\cdot 41^{3} + 39\cdot 41^{4} + 25\cdot 41^{5} + 40\cdot 41^{6} + 20\cdot 41^{7} + 12\cdot 41^{8} + 13\cdot 41^{9} + 10\cdot 41^{10} +O\left(41^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,7,8,3,5,2)$
$(1,4,8,5)(2,6,7,3)$
$(1,8)(4,5)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,8)(4,5)$ $0$ $0$
$1$ $4$ $(1,4,8,5)(2,6,7,3)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,5,8,4)(2,3,7,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$ $0$
$2$ $8$ $(1,6,4,7,8,3,5,2)$ $0$ $0$
$2$ $8$ $(1,7,5,6,8,2,4,3)$ $0$ $0$
$2$ $8$ $(1,3,5,7,8,6,4,2)$ $0$ $0$
$2$ $8$ $(1,7,4,3,8,2,5,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.