Properties

Label 2.2e6_3e2_23.8t8.2c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{6} \cdot 3^{2} \cdot 23 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$13248= 2^{6} \cdot 3^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{8} + 24 x^{6} + 114 x^{4} + 168 x^{2} + 69 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Even
Determinant: 1.3_23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 397 }$ to precision 13.
Roots:
$r_{ 1 }$ $=$ $ 59 + 231\cdot 397 + 372\cdot 397^{2} + 15\cdot 397^{3} + 25\cdot 397^{4} + 228\cdot 397^{5} + 220\cdot 397^{6} + 294\cdot 397^{7} + 102\cdot 397^{8} + 150\cdot 397^{9} + 164\cdot 397^{10} + 145\cdot 397^{11} + 217\cdot 397^{12} +O\left(397^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 90 + 299\cdot 397 + 36\cdot 397^{2} + 173\cdot 397^{3} + 107\cdot 397^{4} + 144\cdot 397^{5} + 169\cdot 397^{6} + 99\cdot 397^{7} + 15\cdot 397^{8} + 205\cdot 397^{9} + 227\cdot 397^{10} + 201\cdot 397^{11} + 60\cdot 397^{12} +O\left(397^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 127 + 332\cdot 397 + 177\cdot 397^{2} + 251\cdot 397^{3} + 385\cdot 397^{4} + 388\cdot 397^{5} + 277\cdot 397^{6} + 30\cdot 397^{7} + 382\cdot 397^{8} + 328\cdot 397^{9} + 56\cdot 397^{10} + 68\cdot 397^{11} + 195\cdot 397^{12} +O\left(397^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 175 + 93\cdot 397 + 333\cdot 397^{2} + 48\cdot 397^{3} + 91\cdot 397^{4} + 317\cdot 397^{5} + 316\cdot 397^{6} + 11\cdot 397^{7} + 143\cdot 397^{8} + 303\cdot 397^{9} + 385\cdot 397^{10} + 268\cdot 397^{11} + 115\cdot 397^{12} +O\left(397^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 222 + 303\cdot 397 + 63\cdot 397^{2} + 348\cdot 397^{3} + 305\cdot 397^{4} + 79\cdot 397^{5} + 80\cdot 397^{6} + 385\cdot 397^{7} + 253\cdot 397^{8} + 93\cdot 397^{9} + 11\cdot 397^{10} + 128\cdot 397^{11} + 281\cdot 397^{12} +O\left(397^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 270 + 64\cdot 397 + 219\cdot 397^{2} + 145\cdot 397^{3} + 11\cdot 397^{4} + 8\cdot 397^{5} + 119\cdot 397^{6} + 366\cdot 397^{7} + 14\cdot 397^{8} + 68\cdot 397^{9} + 340\cdot 397^{10} + 328\cdot 397^{11} + 201\cdot 397^{12} +O\left(397^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 307 + 97\cdot 397 + 360\cdot 397^{2} + 223\cdot 397^{3} + 289\cdot 397^{4} + 252\cdot 397^{5} + 227\cdot 397^{6} + 297\cdot 397^{7} + 381\cdot 397^{8} + 191\cdot 397^{9} + 169\cdot 397^{10} + 195\cdot 397^{11} + 336\cdot 397^{12} +O\left(397^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 338 + 165\cdot 397 + 24\cdot 397^{2} + 381\cdot 397^{3} + 371\cdot 397^{4} + 168\cdot 397^{5} + 176\cdot 397^{6} + 102\cdot 397^{7} + 294\cdot 397^{8} + 246\cdot 397^{9} + 232\cdot 397^{10} + 251\cdot 397^{11} + 179\cdot 397^{12} +O\left(397^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7)(2,8)(4,5)$
$(1,2,8,7)(3,5,6,4)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,7)(2,8)(4,5)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$8$$(1,6,2,4,8,3,7,5)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,3,2,5,8,6,7,4)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.