Properties

Label 2.2e6_3e2_11.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 2^{6} \cdot 3^{2} \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$6336= 2^{6} \cdot 3^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 14 x^{6} - 16 x^{5} - 8 x^{4} + 52 x^{3} - 52 x^{2} + 40 x - 26 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 383 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 41 + 224\cdot 383 + 145\cdot 383^{2} + 361\cdot 383^{3} + 318\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 79 + 153\cdot 383 + 329\cdot 383^{2} + 47\cdot 383^{3} + 323\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 85 + 218\cdot 383 + 259\cdot 383^{2} + 299\cdot 383^{3} + 325\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 204 + 179\cdot 383 + 81\cdot 383^{2} + 380\cdot 383^{3} + 158\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 223 + 189\cdot 383 + 39\cdot 383^{2} + 361\cdot 383^{3} + 172\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 256 + 178\cdot 383 + 2\cdot 383^{2} + 108\cdot 383^{3} + 108\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 313 + 280\cdot 383 + 329\cdot 383^{2} + 355\cdot 383^{3} + 251\cdot 383^{4} +O\left(383^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 335 + 107\cdot 383 + 344\cdot 383^{2} + 255\cdot 383^{4} +O\left(383^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,2,4,8,6,7,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,7)(2,8)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
$4$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$ $0$
$2$ $8$ $(1,3,2,4,8,6,7,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,6,2,5,8,3,7,4)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.