Properties

Label 2.2e6_3e2.8t8.1c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{6} \cdot 3^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$576= 2^{6} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} - 6 x^{4} - 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 5 + 19\cdot 37 + 17\cdot 37^{2} + 5\cdot 37^{3} + 16\cdot 37^{4} + 28\cdot 37^{5} + 28\cdot 37^{6} + 18\cdot 37^{7} + 28\cdot 37^{8} + 37^{9} + 22\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 7 + 18\cdot 37 + 20\cdot 37^{2} + 5\cdot 37^{3} + 21\cdot 37^{4} + 17\cdot 37^{5} + 23\cdot 37^{6} + 3\cdot 37^{7} + 30\cdot 37^{8} + 22\cdot 37^{9} + 33\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 10 + 23\cdot 37 + 28\cdot 37^{2} + 14\cdot 37^{3} + 22\cdot 37^{4} + 13\cdot 37^{5} + 4\cdot 37^{6} + 35\cdot 37^{7} + 24\cdot 37^{8} + 16\cdot 37^{9} + 6\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 14 + 15\cdot 37 + 13\cdot 37^{2} + 13\cdot 37^{3} + 26\cdot 37^{4} + 17\cdot 37^{5} + 34\cdot 37^{6} + 30\cdot 37^{7} + 32\cdot 37^{8} + 8\cdot 37^{9} + 36\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 23 + 21\cdot 37 + 23\cdot 37^{2} + 23\cdot 37^{3} + 10\cdot 37^{4} + 19\cdot 37^{5} + 2\cdot 37^{6} + 6\cdot 37^{7} + 4\cdot 37^{8} + 28\cdot 37^{9} +O\left(37^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 27 + 13\cdot 37 + 8\cdot 37^{2} + 22\cdot 37^{3} + 14\cdot 37^{4} + 23\cdot 37^{5} + 32\cdot 37^{6} + 37^{7} + 12\cdot 37^{8} + 20\cdot 37^{9} + 30\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 30 + 18\cdot 37 + 16\cdot 37^{2} + 31\cdot 37^{3} + 15\cdot 37^{4} + 19\cdot 37^{5} + 13\cdot 37^{6} + 33\cdot 37^{7} + 6\cdot 37^{8} + 14\cdot 37^{9} + 3\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 32 + 17\cdot 37 + 19\cdot 37^{2} + 31\cdot 37^{3} + 20\cdot 37^{4} + 8\cdot 37^{5} + 8\cdot 37^{6} + 18\cdot 37^{7} + 8\cdot 37^{8} + 35\cdot 37^{9} + 14\cdot 37^{10} +O\left(37^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,2)(4,5)(7,8)$
$(1,5,8,4)(2,6,7,3)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,2)(4,5)(7,8)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$4$$4$$(1,5,8,4)(2,6,7,3)$$0$
$2$$8$$(1,4,2,6,8,5,7,3)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,5,2,3,8,4,7,6)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.