Properties

Label 2.2e6_3_7e2.8t8.2c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{6} \cdot 3 \cdot 7^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$9408= 2^{6} \cdot 3 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 84 x^{4} + 392 x^{2} - 588 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 18.
Roots:
$r_{ 1 }$ $=$ $ 1 + 30\cdot 31 + 19\cdot 31^{2} + 20\cdot 31^{3} + 30\cdot 31^{4} + 16\cdot 31^{5} + 26\cdot 31^{6} + 20\cdot 31^{7} + 5\cdot 31^{8} + 24\cdot 31^{9} + 10\cdot 31^{10} + 20\cdot 31^{11} + 12\cdot 31^{12} + 16\cdot 31^{15} + 3\cdot 31^{16} + 18\cdot 31^{17} +O\left(31^{ 18 }\right)$
$r_{ 2 }$ $=$ $ 3 + 15\cdot 31 + 9\cdot 31^{2} + 14\cdot 31^{3} + 9\cdot 31^{4} + 14\cdot 31^{5} + 16\cdot 31^{6} + 10\cdot 31^{7} + 14\cdot 31^{8} + 15\cdot 31^{9} + 13\cdot 31^{10} + 6\cdot 31^{11} + 2\cdot 31^{12} + 25\cdot 31^{13} + 5\cdot 31^{14} + 3\cdot 31^{15} + 17\cdot 31^{16} + 12\cdot 31^{17} +O\left(31^{ 18 }\right)$
$r_{ 3 }$ $=$ $ 8 + 13\cdot 31 + 14\cdot 31^{2} + 19\cdot 31^{3} + 20\cdot 31^{4} + 23\cdot 31^{5} + 15\cdot 31^{6} + 27\cdot 31^{7} + 14\cdot 31^{8} + 6\cdot 31^{9} + 28\cdot 31^{10} + 12\cdot 31^{11} + 4\cdot 31^{12} + 18\cdot 31^{13} + 22\cdot 31^{14} + 8\cdot 31^{15} + 8\cdot 31^{16} + 26\cdot 31^{17} +O\left(31^{ 18 }\right)$
$r_{ 4 }$ $=$ $ 9 + 16\cdot 31 + 14\cdot 31^{2} + 16\cdot 31^{3} + 28\cdot 31^{4} + 29\cdot 31^{6} + 25\cdot 31^{7} + 14\cdot 31^{8} + 22\cdot 31^{9} + 12\cdot 31^{10} + 10\cdot 31^{11} + 2\cdot 31^{12} + 5\cdot 31^{13} + 9\cdot 31^{14} + 18\cdot 31^{15} + 8\cdot 31^{16} + 18\cdot 31^{17} +O\left(31^{ 18 }\right)$
$r_{ 5 }$ $=$ $ 22 + 14\cdot 31 + 16\cdot 31^{2} + 14\cdot 31^{3} + 2\cdot 31^{4} + 30\cdot 31^{5} + 31^{6} + 5\cdot 31^{7} + 16\cdot 31^{8} + 8\cdot 31^{9} + 18\cdot 31^{10} + 20\cdot 31^{11} + 28\cdot 31^{12} + 25\cdot 31^{13} + 21\cdot 31^{14} + 12\cdot 31^{15} + 22\cdot 31^{16} + 12\cdot 31^{17} +O\left(31^{ 18 }\right)$
$r_{ 6 }$ $=$ $ 23 + 17\cdot 31 + 16\cdot 31^{2} + 11\cdot 31^{3} + 10\cdot 31^{4} + 7\cdot 31^{5} + 15\cdot 31^{6} + 3\cdot 31^{7} + 16\cdot 31^{8} + 24\cdot 31^{9} + 2\cdot 31^{10} + 18\cdot 31^{11} + 26\cdot 31^{12} + 12\cdot 31^{13} + 8\cdot 31^{14} + 22\cdot 31^{15} + 22\cdot 31^{16} + 4\cdot 31^{17} +O\left(31^{ 18 }\right)$
$r_{ 7 }$ $=$ $ 28 + 15\cdot 31 + 21\cdot 31^{2} + 16\cdot 31^{3} + 21\cdot 31^{4} + 16\cdot 31^{5} + 14\cdot 31^{6} + 20\cdot 31^{7} + 16\cdot 31^{8} + 15\cdot 31^{9} + 17\cdot 31^{10} + 24\cdot 31^{11} + 28\cdot 31^{12} + 5\cdot 31^{13} + 25\cdot 31^{14} + 27\cdot 31^{15} + 13\cdot 31^{16} + 18\cdot 31^{17} +O\left(31^{ 18 }\right)$
$r_{ 8 }$ $=$ $ 30 + 11\cdot 31^{2} + 10\cdot 31^{3} + 14\cdot 31^{5} + 4\cdot 31^{6} + 10\cdot 31^{7} + 25\cdot 31^{8} + 6\cdot 31^{9} + 20\cdot 31^{10} + 10\cdot 31^{11} + 18\cdot 31^{12} + 30\cdot 31^{13} + 30\cdot 31^{14} + 14\cdot 31^{15} + 27\cdot 31^{16} + 12\cdot 31^{17} +O\left(31^{ 18 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(5,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,7,8,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,4)(2,7)(5,8)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$4$$(1,7,8,2)(3,4,6,5)$$0$
$2$$8$$(1,2,4,6,8,7,5,3)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,7,4,3,8,2,5,6)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.