Properties

Label 2.2e6_3_7.8t11.9c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{6} \cdot 3 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1344= 2^{6} \cdot 3 \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} + 26 x^{4} - 70 x^{2} + 49 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e3_3_7.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 9 + 56\cdot 61 + 25\cdot 61^{2} + 38\cdot 61^{3} + 7\cdot 61^{4} + 19\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 + 40\cdot 61 + 24\cdot 61^{2} + 36\cdot 61^{3} + 36\cdot 61^{4} + 36\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 20 + 58\cdot 61 + 46\cdot 61^{2} + 46\cdot 61^{3} + 46\cdot 61^{4} + 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 29 + 14\cdot 61 + 48\cdot 61^{2} + 4\cdot 61^{3} + 19\cdot 61^{4} + 58\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 32 + 46\cdot 61 + 12\cdot 61^{2} + 56\cdot 61^{3} + 41\cdot 61^{4} + 2\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 41 + 2\cdot 61 + 14\cdot 61^{2} + 14\cdot 61^{3} + 14\cdot 61^{4} + 59\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 49 + 20\cdot 61 + 36\cdot 61^{2} + 24\cdot 61^{3} + 24\cdot 61^{4} + 24\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 52 + 4\cdot 61 + 35\cdot 61^{2} + 22\cdot 61^{3} + 53\cdot 61^{4} + 41\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(3,6)(4,5)$
$(1,7,8,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(3,6)(4,5)$$0$
$2$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$1$$4$$(1,7,8,2)(3,4,6,5)$$2 \zeta_{4}$
$1$$4$$(1,2,8,7)(3,5,6,4)$$-2 \zeta_{4}$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.