Properties

Label 2.2e6_3_7.8t11.10c1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{6} \cdot 3 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1344= 2^{6} \cdot 3 \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 10 x^{6} + 26 x^{4} - 14 x^{2} + 49 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e3_3_7.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 349 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 69 + 230\cdot 349 + 162\cdot 349^{2} + 323\cdot 349^{3} + 215\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 110 + 116\cdot 349 + 323\cdot 349^{2} + 114\cdot 349^{3} + 243\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 148 + 315\cdot 349 + 273\cdot 349^{2} + 163\cdot 349^{3} + 278\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 154 + 117\cdot 349 + 12\cdot 349^{2} + 135\cdot 349^{3} + 173\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 195 + 231\cdot 349 + 336\cdot 349^{2} + 213\cdot 349^{3} + 175\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 201 + 33\cdot 349 + 75\cdot 349^{2} + 185\cdot 349^{3} + 70\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 239 + 232\cdot 349 + 25\cdot 349^{2} + 234\cdot 349^{3} + 105\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 280 + 118\cdot 349 + 186\cdot 349^{2} + 25\cdot 349^{3} + 133\cdot 349^{4} +O\left(349^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(3,6)(4,5)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(3,6)(4,5)$$0$
$1$$4$$(1,2,8,7)(3,5,6,4)$$-2 \zeta_{4}$
$1$$4$$(1,7,8,2)(3,4,6,5)$$2 \zeta_{4}$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.