Properties

Label 2.1344.8t11.l
Dimension $2$
Group $Q_8:C_2$
Conductor $1344$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Artin number field: Galois closure of 8.0.260112384.11
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{-14})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 349 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 69 + 230\cdot 349 + 162\cdot 349^{2} + 323\cdot 349^{3} + 215\cdot 349^{4} +O(349^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 110 + 116\cdot 349 + 323\cdot 349^{2} + 114\cdot 349^{3} + 243\cdot 349^{4} +O(349^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 148 + 315\cdot 349 + 273\cdot 349^{2} + 163\cdot 349^{3} + 278\cdot 349^{4} +O(349^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 154 + 117\cdot 349 + 12\cdot 349^{2} + 135\cdot 349^{3} + 173\cdot 349^{4} +O(349^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 195 + 231\cdot 349 + 336\cdot 349^{2} + 213\cdot 349^{3} + 175\cdot 349^{4} +O(349^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 201 + 33\cdot 349 + 75\cdot 349^{2} + 185\cdot 349^{3} + 70\cdot 349^{4} +O(349^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 239 + 232\cdot 349 + 25\cdot 349^{2} + 234\cdot 349^{3} + 105\cdot 349^{4} +O(349^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 280 + 118\cdot 349 + 186\cdot 349^{2} + 25\cdot 349^{3} + 133\cdot 349^{4} +O(349^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(3,6)(4,5)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$ $0$
$2$ $2$ $(3,6)(4,5)$ $0$ $0$
$1$ $4$ $(1,2,8,7)(3,5,6,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,7,8,2)(3,4,6,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$ $0$
$2$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.