Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 349 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 69 + 230\cdot 349 + 162\cdot 349^{2} + 323\cdot 349^{3} + 215\cdot 349^{4} +O\left(349^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 110 + 116\cdot 349 + 323\cdot 349^{2} + 114\cdot 349^{3} + 243\cdot 349^{4} +O\left(349^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 148 + 315\cdot 349 + 273\cdot 349^{2} + 163\cdot 349^{3} + 278\cdot 349^{4} +O\left(349^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 154 + 117\cdot 349 + 12\cdot 349^{2} + 135\cdot 349^{3} + 173\cdot 349^{4} +O\left(349^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 195 + 231\cdot 349 + 336\cdot 349^{2} + 213\cdot 349^{3} + 175\cdot 349^{4} +O\left(349^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 201 + 33\cdot 349 + 75\cdot 349^{2} + 185\cdot 349^{3} + 70\cdot 349^{4} +O\left(349^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 239 + 232\cdot 349 + 25\cdot 349^{2} + 234\cdot 349^{3} + 105\cdot 349^{4} +O\left(349^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 280 + 118\cdot 349 + 186\cdot 349^{2} + 25\cdot 349^{3} + 133\cdot 349^{4} +O\left(349^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(3,6)(4,5)$ |
| $(1,3)(2,5)(4,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
$0$ |
| $2$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,7,8,2)(3,4,6,5)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,6,8,3)(2,4,7,5)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,4,6,5)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,4)(2,6,7,3)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.