Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 a + 20 + \left(22 a + 6\right)\cdot 23 + \left(13 a + 22\right)\cdot 23^{2} + \left(2 a + 7\right)\cdot 23^{3} + 10 a\cdot 23^{4} + \left(16 a + 7\right)\cdot 23^{5} + \left(10 a + 21\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 a + 2 + \left(22 a + 6\right)\cdot 23 + \left(13 a + 18\right)\cdot 23^{2} + 2 a\cdot 23^{3} + \left(10 a + 5\right)\cdot 23^{4} + \left(16 a + 16\right)\cdot 23^{5} + \left(10 a + 19\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 16 + 4\cdot 23 + 3\cdot 23^{2} + 2\cdot 23^{3} + 18\cdot 23^{4} + 8\cdot 23^{5} + 9\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 11 a + 3 + 16\cdot 23 + 9 a\cdot 23^{2} + \left(20 a + 15\right)\cdot 23^{3} + \left(12 a + 22\right)\cdot 23^{4} + \left(6 a + 15\right)\cdot 23^{5} + \left(12 a + 1\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 11 a + 21 + 16\cdot 23 + \left(9 a + 4\right)\cdot 23^{2} + \left(20 a + 22\right)\cdot 23^{3} + \left(12 a + 17\right)\cdot 23^{4} + \left(6 a + 6\right)\cdot 23^{5} + \left(12 a + 3\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 7 + 18\cdot 23 + 19\cdot 23^{2} + 20\cdot 23^{3} + 4\cdot 23^{4} + 14\cdot 23^{5} + 13\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,6)(3,5)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
| $3$ | $2$ | $(2,6)(3,5)$ | $0$ |
| $3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
| $2$ | $3$ | $(1,3,5)(2,4,6)$ | $-1$ |
| $2$ | $6$ | $(1,2,3,4,5,6)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.