Properties

Label 2.2e6_3_37.4t3.10
Dimension 2
Group $D_4$
Conductor $ 2^{6} \cdot 3 \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$7104= 2^{6} \cdot 3 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} + 28 x^{6} + 91 x^{4} + 84 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 37\cdot 71 + 66\cdot 71^{2} + 51\cdot 71^{3} + 38\cdot 71^{4} + 64\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 + 60\cdot 71 + 37\cdot 71^{2} + 59\cdot 71^{3} + 65\cdot 71^{4} + 60\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 26 + 35\cdot 71 + 53\cdot 71^{2} + 30\cdot 71^{3} + 62\cdot 71^{4} + 29\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 28 + 25\cdot 71 + 15\cdot 71^{2} + 51\cdot 71^{3} + 29\cdot 71^{4} + 48\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 43 + 45\cdot 71 + 55\cdot 71^{2} + 19\cdot 71^{3} + 41\cdot 71^{4} + 22\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 45 + 35\cdot 71 + 17\cdot 71^{2} + 40\cdot 71^{3} + 8\cdot 71^{4} + 41\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 59 + 10\cdot 71 + 33\cdot 71^{2} + 11\cdot 71^{3} + 5\cdot 71^{4} + 10\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 70 + 33\cdot 71 + 4\cdot 71^{2} + 19\cdot 71^{3} + 32\cdot 71^{4} + 6\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.