Properties

Label 2.2e6_3_31.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{6} \cdot 3 \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5952= 2^{6} \cdot 3 \cdot 31 $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} + 43 x^{4} - 108 x^{2} + 729 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e2_3_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 41\cdot 109 + 83\cdot 109^{2} + 63\cdot 109^{3} + 108\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 96\cdot 109 + 80\cdot 109^{2} + 87\cdot 109^{3} + 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 103\cdot 109 + 39\cdot 109^{2} + 34\cdot 109^{3} + 91\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 63\cdot 109 + 84\cdot 109^{2} + 11\cdot 109^{3} + 83\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 60 + 45\cdot 109 + 24\cdot 109^{2} + 97\cdot 109^{3} + 25\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 84 + 5\cdot 109 + 69\cdot 109^{2} + 74\cdot 109^{3} + 17\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 85 + 12\cdot 109 + 28\cdot 109^{2} + 21\cdot 109^{3} + 107\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 99 + 67\cdot 109 + 25\cdot 109^{2} + 45\cdot 109^{3} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.