Properties

Label 2.2e6_3_17e2.6t3.3c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{6} \cdot 3 \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$55488= 2^{6} \cdot 3 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 7 x^{4} - 28 x^{3} + 68 x^{2} - 272 x + 68 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 21 a + 3 + \left(12 a + 17\right)\cdot 23 + 21 a\cdot 23^{2} + \left(12 a + 17\right)\cdot 23^{3} + \left(20 a + 4\right)\cdot 23^{4} + \left(3 a + 18\right)\cdot 23^{5} + \left(16 a + 4\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 4 + 14\cdot 23^{2} + 16\cdot 23^{3} + 11\cdot 23^{4} + 22\cdot 23^{5} + 6\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 22 + \left(10 a + 21\right)\cdot 23 + \left(a + 7\right)\cdot 23^{2} + \left(10 a + 21\right)\cdot 23^{3} + \left(2 a + 9\right)\cdot 23^{4} + \left(19 a + 5\right)\cdot 23^{5} + \left(6 a + 10\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 16 + \left(12 a + 7\right)\cdot 23 + \left(21 a + 1\right)\cdot 23^{2} + \left(12 a + 22\right)\cdot 23^{3} + \left(20 a + 20\right)\cdot 23^{4} + \left(3 a + 17\right)\cdot 23^{5} + \left(16 a + 6\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 12 + \left(10 a + 12\right)\cdot 23 + \left(a + 8\right)\cdot 23^{2} + \left(10 a + 3\right)\cdot 23^{3} + \left(2 a + 3\right)\cdot 23^{4} + \left(19 a + 5\right)\cdot 23^{5} + \left(6 a + 12\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 14 + 9\cdot 23 + 13\cdot 23^{2} + 11\cdot 23^{3} + 18\cdot 23^{4} + 22\cdot 23^{5} + 4\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,2,3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,5)$$-2$
$3$$2$$(2,5)(3,6)$$0$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$2$$3$$(1,3,6)(2,4,5)$$-1$
$2$$6$$(1,2,3,4,6,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.