Properties

Label 2.2e6_3.8t11.3c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{6} \cdot 3 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$192= 2^{6} \cdot 3 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} - 4 x^{5} + 6 x^{4} + 16 x^{3} + 16 x^{2} + 8 x + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e3_3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 13\cdot 73 + 29\cdot 73^{2} + 30\cdot 73^{3} + 13\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 70\cdot 73 + 13\cdot 73^{2} + 5\cdot 73^{3} + 8\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 37\cdot 73 + 61\cdot 73^{2} + 3\cdot 73^{3} + 21\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 10\cdot 73 + 14\cdot 73^{2} + 49\cdot 73^{3} + 13\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 + 28\cdot 73 + 56\cdot 73^{2} + 14\cdot 73^{3} + 30\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 + 25\cdot 73 + 41\cdot 73^{2} + 33\cdot 73^{3} + 30\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 34 + 37\cdot 73 + 32\cdot 73^{2} + 53\cdot 73^{3} + 55\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 71 + 69\cdot 73 + 42\cdot 73^{2} + 28\cdot 73^{3} + 46\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,3)(4,7,5,8)$
$(1,4)(2,7)(3,8)(5,6)$
$(1,6)(7,8)$
$(1,6)(2,3)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,3)(4,5)(7,8)$$-2$
$2$$2$$(1,4)(2,7)(3,8)(5,6)$$0$
$2$$2$$(1,6)(7,8)$$0$
$2$$2$$(1,3)(2,6)(4,7)(5,8)$$0$
$1$$4$$(1,7,6,8)(2,5,3,4)$$2 \zeta_{4}$
$1$$4$$(1,8,6,7)(2,4,3,5)$$-2 \zeta_{4}$
$2$$4$$(1,2,6,3)(4,7,5,8)$$0$
$2$$4$$(1,4,6,5)(2,8,3,7)$$0$
$2$$4$$(1,8,6,7)(2,5,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.