Properties

Label 2.192.8t11.a.a
Dimension $2$
Group $Q_8:C_2$
Conductor $192$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Artin stem field: Galois closure of 8.0.9437184.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.24.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-2}, \sqrt{-3})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 4x^{6} - 4x^{5} + 6x^{4} + 16x^{3} + 16x^{2} + 8x + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 12 + 13\cdot 73 + 29\cdot 73^{2} + 30\cdot 73^{3} + 13\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 + 70\cdot 73 + 13\cdot 73^{2} + 5\cdot 73^{3} + 8\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 17 + 37\cdot 73 + 61\cdot 73^{2} + 3\cdot 73^{3} + 21\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 18 + 10\cdot 73 + 14\cdot 73^{2} + 49\cdot 73^{3} + 13\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 23 + 28\cdot 73 + 56\cdot 73^{2} + 14\cdot 73^{3} + 30\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 29 + 25\cdot 73 + 41\cdot 73^{2} + 33\cdot 73^{3} + 30\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 34 + 37\cdot 73 + 32\cdot 73^{2} + 53\cdot 73^{3} + 55\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 71 + 69\cdot 73 + 42\cdot 73^{2} + 28\cdot 73^{3} + 46\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,3)(4,7,5,8)$
$(1,4)(2,7)(3,8)(5,6)$
$(1,6)(7,8)$
$(1,6)(2,3)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,6)(2,3)(4,5)(7,8)$$-2$
$2$$2$$(1,4)(2,7)(3,8)(5,6)$$0$
$2$$2$$(1,6)(7,8)$$0$
$2$$2$$(1,3)(2,6)(4,7)(5,8)$$0$
$1$$4$$(1,7,6,8)(2,5,3,4)$$-2 \zeta_{4}$
$1$$4$$(1,8,6,7)(2,4,3,5)$$2 \zeta_{4}$
$2$$4$$(1,2,6,3)(4,7,5,8)$$0$
$2$$4$$(1,4,6,5)(2,8,3,7)$$0$
$2$$4$$(1,8,6,7)(2,5,3,4)$$0$