Properties

Label 2.2e6_3.8t11.1
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{6} \cdot 3 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$192= 2^{6} \cdot 3 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{5} - 2 x^{4} - 8 x^{2} - 8 x - 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 69\cdot 73^{2} + 61\cdot 73^{3} + 41\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 52\cdot 73 + 15\cdot 73^{2} + 67\cdot 73^{3} + 31\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 55\cdot 73 + 59\cdot 73^{2} + 14\cdot 73^{3} + 70\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 34\cdot 73 + 6\cdot 73^{2} + 20\cdot 73^{3} + 60\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 49 + 34\cdot 73 + 4\cdot 73^{2} + 22\cdot 73^{3} + 66\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 19\cdot 73 + 38\cdot 73^{2} + 30\cdot 73^{3} + 54\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 64 + 18\cdot 73 + 32\cdot 73^{2} + 33\cdot 73^{3} + 62\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 65 + 3\cdot 73 + 66\cdot 73^{2} + 41\cdot 73^{3} + 50\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(5,8)$
$(1,7,4,6)(2,5,3,8)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,2)(3,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$ $-2$
$2$ $2$ $(1,2)(3,4)(5,7)(6,8)$ $0$ $0$
$2$ $2$ $(1,4)(5,8)$ $0$ $0$
$2$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $0$ $0$
$1$ $4$ $(1,5,4,8)(2,7,3,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,8,4,5)(2,6,3,7)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,7,4,6)(2,5,3,8)$ $0$ $0$
$2$ $4$ $(1,2,4,3)(5,7,8,6)$ $0$ $0$
$2$ $4$ $(1,8,4,5)(2,7,3,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.