Properties

Label 2.2e6_23e2.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{6} \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$33856= 2^{6} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 11 x^{4} - 20 x^{3} + 84 x^{2} - 144 x - 136 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 4 + 7 + \left(2 a + 3\right)\cdot 7^{2} + \left(5 a + 5\right)\cdot 7^{3} + \left(5 a + 1\right)\cdot 7^{4} + \left(a + 3\right)\cdot 7^{5} + \left(2 a + 2\right)\cdot 7^{6} + \left(6 a + 3\right)\cdot 7^{7} + \left(4 a + 1\right)\cdot 7^{8} + \left(a + 4\right)\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 6 + 4\cdot 7 + 6\cdot 7^{2} + 7^{3} + 4\cdot 7^{4} + 4\cdot 7^{5} + 4\cdot 7^{6} + 3\cdot 7^{7} + 6\cdot 7^{8} + 2\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 3 + 4\cdot 7 + 2 a\cdot 7^{2} + \left(5 a + 4\right)\cdot 7^{3} + \left(5 a + 5\right)\cdot 7^{4} + a\cdot 7^{5} + \left(2 a + 5\right)\cdot 7^{6} + 6 a\cdot 7^{7} + \left(4 a + 3\right)\cdot 7^{8} + \left(a + 3\right)\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 4 }$ $=$ $ a + 3 + \left(6 a + 3\right)\cdot 7 + \left(4 a + 4\right)\cdot 7^{2} + \left(a + 1\right)\cdot 7^{3} + \left(a + 2\right)\cdot 7^{4} + \left(5 a + 6\right)\cdot 7^{5} + \left(4 a + 2\right)\cdot 7^{6} + 2 a\cdot 7^{8} + \left(5 a + 1\right)\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 5 }$ $=$ $ a + 2 + \left(6 a + 6\right)\cdot 7 + \left(4 a + 1\right)\cdot 7^{2} + a\cdot 7^{3} + \left(a + 6\right)\cdot 7^{4} + \left(5 a + 3\right)\cdot 7^{5} + \left(4 a + 5\right)\cdot 7^{6} + 4\cdot 7^{7} + \left(2 a + 1\right)\cdot 7^{8} + 5 a\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 5 + 4\cdot 7^{2} + 7^{4} + 2\cdot 7^{5} + 7^{7} + 7^{8} + 2\cdot 7^{9} +O\left(7^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)$
$(1,3)(2,6)(4,5)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,5)$$-2$
$3$$2$$(1,2)(3,6)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$2$$3$$(1,4,2)(3,5,6)$$-1$
$2$$6$$(1,5,2,3,4,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.