Properties

Label 2.1216.8t11.a.b
Dimension $2$
Group $Q_8:C_2$
Conductor $1216$
Root number not computed
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(1216\)\(\medspace = 2^{6} \cdot 19 \)
Artin stem field: 8.0.378535936.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.152.2t1.b.a
Projective image: $C_2^2$
Projective field: \(\Q(\sqrt{-2}, \sqrt{-19})\)

Defining polynomial

$f(x)$$=$\(x^{8} - 4 x^{7} + 20 x^{6} - 44 x^{5} + 98 x^{4} - 128 x^{3} + 144 x^{2} - 96 x + 34\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 30 + 54\cdot 137 + 7\cdot 137^{2} + 122\cdot 137^{3} + 33\cdot 137^{4} +O(137^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 55 + 86\cdot 137 + 97\cdot 137^{2} + 55\cdot 137^{3} + 35\cdot 137^{4} +O(137^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 71 + 34\cdot 137 + 42\cdot 137^{2} + 87\cdot 137^{3} + 72\cdot 137^{4} +O(137^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 86 + 3\cdot 137 + 105\cdot 137^{2} + 126\cdot 137^{3} + 73\cdot 137^{4} +O(137^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 89 + 44\cdot 137 + 119\cdot 137^{2} + 74\cdot 137^{3} + 93\cdot 137^{4} +O(137^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 103 + 27\cdot 137 + 87\cdot 137^{2} + 77\cdot 137^{3} + 114\cdot 137^{4} +O(137^{5})\)  Toggle raw display
$r_{ 7 }$ $=$ \( 120 + 98\cdot 137 + 126\cdot 137^{2} + 8\cdot 137^{3} + 132\cdot 137^{4} +O(137^{5})\)  Toggle raw display
$r_{ 8 }$ $=$ \( 135 + 60\cdot 137 + 99\cdot 137^{2} + 131\cdot 137^{3} + 128\cdot 137^{4} +O(137^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,4)(3,8)(5,7)$
$(1,3)(2,7)(4,5)(6,8)$
$(1,7,3,2)(4,6,5,8)$
$(1,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,7)(4,5)(6,8)$$-2$
$2$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$2$$2$$(1,3)(4,5)$$0$
$2$$2$$(1,2)(3,7)(4,8)(5,6)$$0$
$1$$4$$(1,5,3,4)(2,6,7,8)$$2 \zeta_{4}$
$1$$4$$(1,4,3,5)(2,8,7,6)$$-2 \zeta_{4}$
$2$$4$$(1,7,3,2)(4,6,5,8)$$0$
$2$$4$$(1,6,3,8)(2,5,7,4)$$0$
$2$$4$$(1,4,3,5)(2,6,7,8)$$0$

The blue line marks the conjugacy class containing complex conjugation.