Properties

Label 2.2e6_17e2_59.6t3.3c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{6} \cdot 17^{2} \cdot 59 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$1091264= 2^{6} \cdot 17^{2} \cdot 59 $
Artin number field: Splitting field of $f= x^{6} + 106 x^{4} - 2 x^{3} + 3472 x^{2} + 200 x + 34817 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 23 + 12\cdot 23^{2} + 13\cdot 23^{3} + 11\cdot 23^{4} + 12\cdot 23^{5} + 23^{6} + 15\cdot 23^{7} + 22\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 2 }$ $=$ $ a + 17 + \left(3 a + 7\right)\cdot 23 + \left(5 a + 22\right)\cdot 23^{2} + \left(7 a + 16\right)\cdot 23^{3} + \left(21 a + 11\right)\cdot 23^{4} + \left(16 a + 19\right)\cdot 23^{5} + \left(22 a + 18\right)\cdot 23^{6} + \left(21 a + 19\right)\cdot 23^{7} + \left(6 a + 15\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 14 + \left(19 a + 15\right)\cdot 23 + \left(17 a + 16\right)\cdot 23^{2} + \left(15 a + 4\right)\cdot 23^{3} + \left(a + 21\right)\cdot 23^{4} + \left(6 a + 18\right)\cdot 23^{5} + 3\cdot 23^{6} + \left(a + 4\right)\cdot 23^{7} + \left(16 a + 7\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 4 }$ $=$ $ a + 12 + \left(3 a + 10\right)\cdot 23 + \left(5 a + 9\right)\cdot 23^{2} + \left(7 a + 18\right)\cdot 23^{3} + \left(21 a + 8\right)\cdot 23^{4} + \left(16 a + 6\right)\cdot 23^{5} + \left(22 a + 21\right)\cdot 23^{6} + \left(21 a + 5\right)\cdot 23^{7} + \left(6 a + 15\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 19 + \left(19 a + 12\right)\cdot 23 + \left(17 a + 6\right)\cdot 23^{2} + \left(15 a + 3\right)\cdot 23^{3} + \left(a + 1\right)\cdot 23^{4} + \left(6 a + 9\right)\cdot 23^{5} + 23^{6} + \left(a + 18\right)\cdot 23^{7} + \left(16 a + 7\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 6 + 21\cdot 23 + 23^{2} + 12\cdot 23^{3} + 14\cdot 23^{4} + 2\cdot 23^{5} + 22\cdot 23^{6} + 5\cdot 23^{7} +O\left(23^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,4)$
$(1,2,3,6,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,5)$$-2$
$3$$2$$(2,5)(3,4)$$0$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$2$$3$$(1,3,4)(2,6,5)$$-1$
$2$$6$$(1,2,3,6,4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.