Properties

Label 2.2e6_17.8t6.2c2
Dimension 2
Group $D_{8}$
Conductor $ 2^{6} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$1088= 2^{6} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 11 x^{4} - 20 x^{2} + 17 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.2e2_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 9 + 29\cdot 53 + 16\cdot 53^{2} + 17\cdot 53^{3} + 42\cdot 53^{4} + 31\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 + 37\cdot 53 + 19\cdot 53^{2} + 29\cdot 53^{3} + 36\cdot 53^{4} + 15\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 + 12\cdot 53 + 18\cdot 53^{2} + 44\cdot 53^{3} + 52\cdot 53^{4} + 14\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 20\cdot 53 + 48\cdot 53^{2} + 38\cdot 53^{3} + 41\cdot 53^{4} + 29\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 27 + 32\cdot 53 + 4\cdot 53^{2} + 14\cdot 53^{3} + 11\cdot 53^{4} + 23\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 30 + 40\cdot 53 + 34\cdot 53^{2} + 8\cdot 53^{3} + 38\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 34 + 15\cdot 53 + 33\cdot 53^{2} + 23\cdot 53^{3} + 16\cdot 53^{4} + 37\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 44 + 23\cdot 53 + 36\cdot 53^{2} + 35\cdot 53^{3} + 10\cdot 53^{4} + 21\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,2)(4,5)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$4$$2$$(1,2)(4,5)(7,8)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$8$$(1,3,2,4,8,6,7,5)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,4,7,3,8,5,2,6)$$-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.