Properties

Label 2.2e6_17.8t6.1c2
Dimension 2
Group $D_{8}$
Conductor $ 2^{6} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$1088= 2^{6} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} + x^{4} - 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.2e2_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 5 + 29\cdot 53 + 48\cdot 53^{2} + 2\cdot 53^{3} + 24\cdot 53^{4} + 3\cdot 53^{5} + 43\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 9 + 25\cdot 53 + 3\cdot 53^{2} + 34\cdot 53^{3} + 45\cdot 53^{4} + 7\cdot 53^{5} + 3\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 15 + 10\cdot 53 + 38\cdot 53^{2} + 22\cdot 53^{3} + 51\cdot 53^{4} + 5\cdot 53^{5} + 20\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 26 + 52\cdot 53 + 26\cdot 53^{2} + 38\cdot 53^{3} + 50\cdot 53^{4} + 45\cdot 53^{5} + 29\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 27 + 26\cdot 53^{2} + 14\cdot 53^{3} + 2\cdot 53^{4} + 7\cdot 53^{5} + 23\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 38 + 42\cdot 53 + 14\cdot 53^{2} + 30\cdot 53^{3} + 53^{4} + 47\cdot 53^{5} + 32\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 44 + 27\cdot 53 + 49\cdot 53^{2} + 18\cdot 53^{3} + 7\cdot 53^{4} + 45\cdot 53^{5} + 49\cdot 53^{6} +O\left(53^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 48 + 23\cdot 53 + 4\cdot 53^{2} + 50\cdot 53^{3} + 28\cdot 53^{4} + 49\cdot 53^{5} + 9\cdot 53^{6} +O\left(53^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,2)(4,5)(7,8)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$4$$2$$(1,2)(4,5)(7,8)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$2$$8$$(1,4,7,3,8,5,2,6)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,3,2,4,8,6,7,5)$$-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.