Properties

Label 2.2e6_17.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{6} \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1088= 2^{6} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} + 9 x^{4} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 1 + 10\cdot 13 + 12\cdot 13^{2} + 13^{3} + 6\cdot 13^{4} + 3\cdot 13^{5} + 12\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 + 6\cdot 13 + 5\cdot 13^{2} + 12\cdot 13^{3} + 12\cdot 13^{4} + 10\cdot 13^{5} + 10\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 3 + 11\cdot 13 + 4\cdot 13^{2} + 8\cdot 13^{3} + 9\cdot 13^{5} + 12\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 5 + 3\cdot 13 + 11\cdot 13^{2} + 5\cdot 13^{3} + 6\cdot 13^{4} + 13^{5} + 5\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 8 + 9\cdot 13 + 13^{2} + 7\cdot 13^{3} + 6\cdot 13^{4} + 11\cdot 13^{5} + 7\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 10 + 13 + 8\cdot 13^{2} + 4\cdot 13^{3} + 12\cdot 13^{4} + 3\cdot 13^{5} +O\left(13^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 11 + 6\cdot 13 + 7\cdot 13^{2} + 2\cdot 13^{5} + 2\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 12 + 2\cdot 13 + 11\cdot 13^{3} + 6\cdot 13^{4} + 9\cdot 13^{5} +O\left(13^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.