Properties

Label 2.2e6_139.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{6} \cdot 139 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$8896= 2^{6} \cdot 139 $
Artin number field: Splitting field of $f= x^{6} - 8 x^{4} + 16 x^{2} - 1112 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.139.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 23 + 11\cdot 23^{2} + 10\cdot 23^{3} + 12\cdot 23^{4} + 5\cdot 23^{5} + 5\cdot 23^{6} + 20\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 4 + 5\cdot 23 + 17\cdot 23^{2} + \left(15 a + 1\right)\cdot 23^{3} + \left(17 a + 19\right)\cdot 23^{4} + \left(2 a + 8\right)\cdot 23^{5} + \left(5 a + 10\right)\cdot 23^{6} + \left(8 a + 4\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 1 + \left(22 a + 19\right)\cdot 23 + \left(22 a + 16\right)\cdot 23^{2} + \left(7 a + 8\right)\cdot 23^{3} + \left(5 a + 16\right)\cdot 23^{4} + \left(20 a + 19\right)\cdot 23^{5} + \left(17 a + 17\right)\cdot 23^{6} + \left(14 a + 15\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 18 + 21\cdot 23 + 11\cdot 23^{2} + 12\cdot 23^{3} + 10\cdot 23^{4} + 17\cdot 23^{5} + 17\cdot 23^{6} + 2\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 19 + \left(22 a + 17\right)\cdot 23 + \left(22 a + 5\right)\cdot 23^{2} + \left(7 a + 21\right)\cdot 23^{3} + \left(5 a + 3\right)\cdot 23^{4} + \left(20 a + 14\right)\cdot 23^{5} + \left(17 a + 12\right)\cdot 23^{6} + \left(14 a + 18\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 22 + 3\cdot 23 + 6\cdot 23^{2} + \left(15 a + 14\right)\cdot 23^{3} + \left(17 a + 6\right)\cdot 23^{4} + \left(2 a + 3\right)\cdot 23^{5} + \left(5 a + 5\right)\cdot 23^{6} + \left(8 a + 7\right)\cdot 23^{7} +O\left(23^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,6)(3,4)$$0$
$2$$3$$(1,5,6)(2,3,4)$$-1$
$2$$6$$(1,3,5,4,6,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.