Properties

Label 2.2e6_13.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{6} \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$832= 2^{6} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} + 11 x^{4} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 51\cdot 157 + 96\cdot 157^{2} + 102\cdot 157^{3} + 45\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 122\cdot 157 + 151\cdot 157^{2} + 59\cdot 157^{3} + 69\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 119\cdot 157 + 88\cdot 157^{2} + 141\cdot 157^{3} + 48\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 + 24\cdot 157 + 89\cdot 157^{2} + 126\cdot 157^{3} + 109\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 100 + 132\cdot 157 + 67\cdot 157^{2} + 30\cdot 157^{3} + 47\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 131 + 37\cdot 157 + 68\cdot 157^{2} + 15\cdot 157^{3} + 108\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 146 + 34\cdot 157 + 5\cdot 157^{2} + 97\cdot 157^{3} + 87\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 151 + 105\cdot 157 + 60\cdot 157^{2} + 54\cdot 157^{3} + 111\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.