Properties

Label 2.2e6_11.8t11.2c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{6} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$704= 2^{6} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} - 12 x^{5} + 12 x^{4} + 56 x^{3} + 76 x^{2} + 52 x + 17 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.2e3_11.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 37\cdot 89 + 62\cdot 89^{2} + 26\cdot 89^{3} + 3\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 67\cdot 89 + 35\cdot 89^{2} + 37\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 46 + 28\cdot 89 + 76\cdot 89^{2} + 12\cdot 89^{3} + 60\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 34\cdot 89 + 32\cdot 89^{2} + 72\cdot 89^{3} + 8\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 62 + 77\cdot 89 + 6\cdot 89^{2} + 66\cdot 89^{3} + 16\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 66 + 3\cdot 89 + 68\cdot 89^{2} + 87\cdot 89^{3} + 17\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 83 + 44\cdot 89 + 3\cdot 89^{2} + 12\cdot 89^{3} + 21\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 87 + 61\cdot 89 + 70\cdot 89^{2} + 40\cdot 89^{3} + 45\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,3,6)(2,5,7,4)$
$(1,2)(3,7)(4,6)(5,8)$
$(1,3)(2,7)(4,5)(6,8)$
$(2,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,7)(4,5)(6,8)$$-2$
$2$$2$$(1,2)(3,7)(4,6)(5,8)$$0$
$2$$2$$(2,7)(6,8)$$0$
$2$$2$$(1,8)(2,4)(3,6)(5,7)$$0$
$1$$4$$(1,5,3,4)(2,8,7,6)$$2 \zeta_{4}$
$1$$4$$(1,4,3,5)(2,6,7,8)$$-2 \zeta_{4}$
$2$$4$$(1,8,3,6)(2,5,7,4)$$0$
$2$$4$$(1,7,3,2)(4,8,5,6)$$0$
$2$$4$$(1,5,3,4)(2,6,7,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.