Properties

Label 2.2e5_7e2.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{5} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1568= 2^{5} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 10 x^{6} + 34 x^{4} - 10 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 9\cdot 43 + 37\cdot 43^{2} + 40\cdot 43^{3} + 3\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 18\cdot 43 + 8\cdot 43^{2} + 22\cdot 43^{3} + 19\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 18\cdot 43 + 12\cdot 43^{2} + 20\cdot 43^{3} + 21\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 + 15\cdot 43 + 21\cdot 43^{2} + 7\cdot 43^{3} + 6\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 + 27\cdot 43 + 21\cdot 43^{2} + 35\cdot 43^{3} + 36\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 + 24\cdot 43 + 30\cdot 43^{2} + 22\cdot 43^{3} + 21\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 36 + 24\cdot 43 + 34\cdot 43^{2} + 20\cdot 43^{3} + 23\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 37 + 33\cdot 43 + 5\cdot 43^{2} + 2\cdot 43^{3} + 39\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,4,2,6)(3,8,5,7)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$
$2$ $4$ $(1,4,2,6)(3,8,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.