Properties

Label 2.2e5_7.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{5} \cdot 7 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$224= 2^{5} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} + 10 x^{4} + 2 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_7.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 18\cdot 71 + 3\cdot 71^{2} + 9\cdot 71^{3} + 41\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 35\cdot 71 + 57\cdot 71^{2} + 6\cdot 71^{3} + 67\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 48\cdot 71 + 26\cdot 71^{2} + 61\cdot 71^{3} + 24\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 + 46\cdot 71 + 14\cdot 71^{2} + 15\cdot 71^{3} + 21\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 46 + 24\cdot 71 + 56\cdot 71^{2} + 55\cdot 71^{3} + 49\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 54 + 22\cdot 71 + 44\cdot 71^{2} + 9\cdot 71^{3} + 46\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 61 + 35\cdot 71 + 13\cdot 71^{2} + 64\cdot 71^{3} + 3\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 64 + 52\cdot 71 + 67\cdot 71^{2} + 61\cdot 71^{3} + 29\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,6)(3,8,4,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$2$$4$$(1,5,2,6)(3,8,4,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.