Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 18\cdot 71 + 3\cdot 71^{2} + 9\cdot 71^{3} + 41\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 + 35\cdot 71 + 57\cdot 71^{2} + 6\cdot 71^{3} + 67\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 17 + 48\cdot 71 + 26\cdot 71^{2} + 61\cdot 71^{3} + 24\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 25 + 46\cdot 71 + 14\cdot 71^{2} + 15\cdot 71^{3} + 21\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 46 + 24\cdot 71 + 56\cdot 71^{2} + 55\cdot 71^{3} + 49\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 54 + 22\cdot 71 + 44\cdot 71^{2} + 9\cdot 71^{3} + 46\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 61 + 35\cdot 71 + 13\cdot 71^{2} + 64\cdot 71^{3} + 3\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 64 + 52\cdot 71 + 67\cdot 71^{2} + 61\cdot 71^{3} + 29\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5,2,6)(3,8,4,7)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,4)(5,6)(7,8)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,7)(3,5)(4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,2,6)(3,8,4,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.