Properties

Label 2.2e5_5_7e2.6t3.5c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{5} \cdot 5 \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$7840= 2^{5} \cdot 5 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 8 x^{4} - 32 x^{3} + 66 x^{2} - 60 x + 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e3_5.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 14 + \left(12 a + 25\right)\cdot 29 + 28\cdot 29^{2} + 22\cdot 29^{3} + \left(12 a + 24\right)\cdot 29^{4} + \left(11 a + 27\right)\cdot 29^{5} + \left(15 a + 13\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 13 + \left(24 a + 13\right)\cdot 29 + \left(25 a + 4\right)\cdot 29^{2} + \left(2 a + 21\right)\cdot 29^{3} + \left(15 a + 1\right)\cdot 29^{4} + \left(26 a + 26\right)\cdot 29^{5} + \left(5 a + 2\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 27 + \left(16 a + 10\right)\cdot 29 + \left(28 a + 18\right)\cdot 29^{2} + \left(28 a + 22\right)\cdot 29^{3} + \left(16 a + 26\right)\cdot 29^{4} + \left(17 a + 14\right)\cdot 29^{5} + \left(13 a + 21\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 23 + 18\cdot 29 + 4\cdot 29^{2} + 11\cdot 29^{3} + 24\cdot 29^{4} + 24\cdot 29^{5} + 2\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 7 + \left(4 a + 28\right)\cdot 29 + \left(3 a + 21\right)\cdot 29^{2} + \left(26 a + 9\right)\cdot 29^{3} + \left(13 a + 16\right)\cdot 29^{4} + \left(2 a + 27\right)\cdot 29^{5} + \left(23 a + 5\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 5 + 19\cdot 29 + 8\cdot 29^{2} + 28\cdot 29^{3} + 21\cdot 29^{4} + 23\cdot 29^{5} + 10\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(3,6)(4,5)$
$(1,3,6)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,5)(4,6)$$-2$
$3$$2$$(3,6)(4,5)$$0$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$2$$3$$(1,3,6)(2,5,4)$$-1$
$2$$6$$(1,5,6,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.