Basic invariants
Dimension: | $2$ |
Group: | $C_6\times S_3$ |
Conductor: | \(3040\)\(\medspace = 2^{5} \cdot 5 \cdot 19 \) |
Artin stem field: | Galois closure of 12.0.34162868224000000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6\times S_3$ |
Parity: | odd |
Determinant: | 1.760.6t1.b.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.14440.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{12} - 4 x^{11} + 10 x^{10} - 16 x^{9} + 28 x^{8} - 36 x^{7} + 58 x^{6} - 52 x^{5} + 79 x^{4} + \cdots + 41 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{6} + 10x^{3} + 11x^{2} + 11x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 2 a^{5} + 7 a^{4} + 6 a^{3} + 5 a^{2} + 7 a + 1 + \left(11 a^{5} + 7 a^{4} + 10 a^{3} + 12 a^{2} + 2 a + 11\right)\cdot 13 + \left(6 a^{5} + 4 a^{4} + 2 a^{3} + 10 a^{2} + a + 3\right)\cdot 13^{2} + \left(6 a^{5} + 8 a^{4} + 10 a^{3} + 9 a^{2} + 5 a + 10\right)\cdot 13^{3} + \left(a^{5} + 2 a^{4} + 2 a^{3} + a^{2} + 10 a + 5\right)\cdot 13^{4} + \left(3 a^{5} + 4 a^{4} + 6 a^{3} + 2 a^{2} + 12 a + 5\right)\cdot 13^{5} + \left(5 a^{4} + 12 a^{3} + 8 a^{2} + a + 10\right)\cdot 13^{6} + \left(10 a^{5} + a^{4} + 11 a^{3} + 10 a^{2} + 6 a + 12\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 2 }$ | $=$ | \( 7 a^{5} + 11 a^{4} + 2 a^{3} + 6 a^{2} + 11 a + 5 + \left(12 a^{5} + 4 a^{4} + 7 a^{3} + 3 a^{2} + 12\right)\cdot 13 + \left(6 a^{5} + 2 a^{4} + 3 a^{3} + 11 a^{2} + 7 a + 1\right)\cdot 13^{2} + \left(2 a^{5} + 3 a^{4} + 8 a^{3} + a^{2} + 8 a + 7\right)\cdot 13^{3} + \left(10 a^{5} + 7 a^{4} + 4 a^{3} + 8 a^{2} + 7 a + 9\right)\cdot 13^{4} + \left(6 a^{5} + 7 a^{4} + 11 a^{3} + 5 a^{2} + 5 a + 3\right)\cdot 13^{5} + \left(9 a^{5} + 5 a^{4} + 7 a^{3} + 3 a^{2} + 10 a + 7\right)\cdot 13^{6} + \left(4 a^{4} + 9 a^{3} + 12 a^{2} + 2 a + 4\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 3 }$ | $=$ | \( 5 a^{5} + 2 a^{4} + 8 a^{3} + 6 a^{2} + 12 a + 4 + \left(3 a^{5} + 12 a^{4} + 8 a^{2} + 7 a\right)\cdot 13 + \left(11 a^{5} + 6 a^{4} + 7 a^{2} + 8 a\right)\cdot 13^{2} + \left(3 a^{5} + 4 a^{4} + 10 a^{3} + 9 a^{2} + 8 a + 11\right)\cdot 13^{3} + \left(5 a^{5} + 12 a^{4} + 10 a^{3} + a^{2} + 9 a + 10\right)\cdot 13^{4} + \left(2 a^{5} + 7 a^{4} + 8 a^{3} + a^{2} + 9 a + 4\right)\cdot 13^{5} + \left(2 a^{5} + 12 a^{4} + 7 a^{3} + 4 a^{2} + 7 a + 1\right)\cdot 13^{6} + \left(9 a^{5} + 9 a^{4} + a^{3} + 4 a^{2} + a + 5\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 4 }$ | $=$ | \( 7 a^{5} + 10 a^{4} + 4 a^{3} + 5 a^{2} + 11 a + 12 + \left(2 a^{5} + 4 a^{4} + 8 a^{3} + 4 a^{2} + 3 a + 3\right)\cdot 13 + \left(8 a^{5} + 9 a^{4} + 5 a^{3} + 3 a^{2} + 2 a + 1\right)\cdot 13^{2} + \left(12 a^{5} + 3 a^{3} + 10 a^{2} + 3 a + 1\right)\cdot 13^{3} + \left(8 a^{4} + 3 a^{3} + 5 a^{2} + 9 a + 2\right)\cdot 13^{4} + \left(8 a^{5} + 8 a^{4} + 2 a^{3} + 2 a^{2} + 3 a + 8\right)\cdot 13^{5} + \left(10 a^{5} + 9 a^{4} + 4 a^{3} + 2 a^{2} + a\right)\cdot 13^{6} + \left(2 a^{5} + 3 a^{4} + 5 a^{3} + 10 a + 8\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 5 }$ | $=$ | \( 7 a^{5} + 7 a^{4} + 10 a^{3} + 2 a^{2} + 11 a + 4 + \left(5 a^{5} + 2 a^{4} + 5 a^{3} + 6 a^{2} + 2 a + 1\right)\cdot 13 + \left(10 a^{5} + 7 a^{4} + 9 a^{2} + 7 a + 7\right)\cdot 13^{2} + \left(a^{5} + a^{4} + 10 a\right)\cdot 13^{3} + \left(2 a^{5} + 11 a^{4} + 7 a^{3} + 6 a^{2} + 12 a + 6\right)\cdot 13^{4} + \left(5 a^{5} + 7 a^{4} + 2 a^{3} + 10 a^{2} + 12 a + 4\right)\cdot 13^{5} + \left(8 a^{5} + 5 a^{4} + 12 a^{2} + 6 a + 6\right)\cdot 13^{6} + \left(a^{5} + 2 a^{4} + 7 a^{3} + 8 a^{2} + 6 a + 5\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 6 }$ | $=$ | \( 8 a^{4} + 5 a^{3} + 2 a^{2} + 8 a + 1 + \left(5 a^{5} + 12 a^{4} + a^{3} + 6 a^{2} + 8 a + 6\right)\cdot 13 + \left(6 a^{4} + 7 a^{3} + 7 a + 10\right)\cdot 13^{2} + \left(10 a^{5} + 10 a^{4} + 8 a^{3} + 8 a^{2} + 12 a + 9\right)\cdot 13^{3} + \left(10 a^{5} + 10 a^{4} + 12 a^{3} + 8 a^{2} + 2 a + 11\right)\cdot 13^{4} + \left(8 a^{5} + 3 a^{4} + 3 a^{3} + 5 a^{2} + 5\right)\cdot 13^{5} + \left(3 a^{5} + 8 a^{4} + 8 a^{3} + 6 a^{2} + 5 a + 10\right)\cdot 13^{6} + \left(4 a^{5} + 5 a^{4} + 5 a^{3} + 11 a^{2} + a + 8\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 7 }$ | $=$ | \( 10 a^{5} + 5 a^{4} + 3 a^{3} + 5 a^{2} + 10 + \left(10 a^{5} + a^{4} + 12 a^{3} + 7 a^{2} + 11 a + 3\right)\cdot 13 + \left(5 a^{4} + 4 a^{3} + 9 a^{2} + 2 a + 4\right)\cdot 13^{2} + \left(7 a^{5} + 7 a^{4} + 5 a^{3} + 6 a + 1\right)\cdot 13^{3} + \left(8 a^{5} + 2 a^{4} + 6 a^{3} + 4 a^{2} + a + 12\right)\cdot 13^{4} + \left(4 a^{5} + 8 a^{4} + 7 a^{3} + 10 a^{2} + 2 a + 11\right)\cdot 13^{5} + \left(10 a^{5} + 2 a^{4} + 7 a^{3} + 8 a^{2} + 8 a + 6\right)\cdot 13^{6} + \left(4 a^{5} + 5 a^{4} + 2 a^{3} + 7 a^{2} + 9 a + 6\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 8 }$ | $=$ | \( 2 a^{5} + 8 a^{4} + a^{3} + 5 a^{2} + 4 a + 8 + \left(2 a^{5} + 11 a^{4} + 10 a^{3} + 12 a^{2} + 12 a + 9\right)\cdot 13 + \left(2 a^{5} + 9 a^{4} + 7 a^{3} + a^{2} + 3 a + 1\right)\cdot 13^{2} + \left(12 a^{4} + 11 a^{3} + a^{2} + 4 a + 5\right)\cdot 13^{3} + \left(8 a^{5} + 7 a^{4} + 6 a^{3} + 8 a^{2} + 8\right)\cdot 13^{4} + \left(9 a^{5} + 12 a^{4} + 3 a^{3} + 10 a^{2} + 6 a + 1\right)\cdot 13^{5} + \left(7 a^{5} + 6 a^{4} + 12 a^{3} + 2 a^{2} + 7 a + 10\right)\cdot 13^{6} + \left(10 a^{5} + 7 a^{4} + 8 a^{3} + 10 a^{2} + 1\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 9 }$ | $=$ | \( 2 a^{5} + 5 a^{4} + 7 a^{3} + 2 a^{2} + 4 a + \left(5 a^{5} + 9 a^{4} + 7 a^{3} + a^{2} + 11 a + 7\right)\cdot 13 + \left(4 a^{5} + 7 a^{4} + 2 a^{3} + 8 a^{2} + 8 a + 7\right)\cdot 13^{2} + \left(2 a^{5} + 8 a^{3} + 4 a^{2} + 11 a + 4\right)\cdot 13^{3} + \left(9 a^{5} + 11 a^{4} + 10 a^{3} + 8 a^{2} + 3 a + 12\right)\cdot 13^{4} + \left(6 a^{5} + 11 a^{4} + 3 a^{3} + 5 a^{2} + 2 a + 10\right)\cdot 13^{5} + \left(5 a^{5} + 2 a^{4} + 8 a^{3} + 2\right)\cdot 13^{6} + \left(9 a^{5} + 6 a^{4} + 10 a^{3} + 6 a^{2} + 10 a + 12\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 10 }$ | $=$ | \( 8 a^{5} + 6 a^{4} + 2 a^{3} + 2 a^{2} + a + 10 + \left(4 a^{5} + 6 a^{4} + 3 a^{3} + a^{2} + 4 a + 11\right)\cdot 13 + \left(7 a^{5} + 7 a^{4} + 9 a^{3} + 12 a^{2} + 9 a + 10\right)\cdot 13^{2} + \left(10 a^{5} + 9 a^{4} + 3 a^{3} + 11 a^{2}\right)\cdot 13^{3} + \left(4 a^{5} + 10 a^{4} + 3 a^{3} + 10 a^{2} + 7 a + 5\right)\cdot 13^{4} + \left(10 a^{5} + 7 a^{4} + 5 a^{3} + 2 a + 12\right)\cdot 13^{5} + \left(5 a^{4} + 3 a^{3} + 7 a^{2} + 11 a + 6\right)\cdot 13^{6} + \left(12 a^{5} + 9 a^{4} + 9 a^{3} + 8 a^{2} + 4 a + 2\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 11 }$ | $=$ | \( 2 a^{5} + 9 a^{4} + 12 a^{3} + 6 a^{2} + 4 a + 1 + \left(12 a^{5} + 11 a^{4} + 8 a^{3} + 11 a^{2} + 9 a + 5\right)\cdot 13 + \left(2 a^{4} + 5 a^{3} + 9 a^{2} + 8 a + 2\right)\cdot 13^{2} + \left(3 a^{5} + 2 a^{4} + 3 a^{3} + 5 a^{2} + 9 a + 11\right)\cdot 13^{3} + \left(4 a^{5} + 7 a^{4} + 8 a^{3} + 10 a^{2} + 11 a + 2\right)\cdot 13^{4} + \left(8 a^{5} + 11 a^{4} + 12 a^{3} + 7 a + 10\right)\cdot 13^{5} + \left(6 a^{5} + 2 a^{4} + 2 a^{3} + 4 a^{2} + 3 a + 3\right)\cdot 13^{6} + \left(8 a^{5} + 8 a^{4} + 9 a^{2} + 6 a + 11\right)\cdot 13^{7} +O(13^{8})\) |
$r_{ 12 }$ | $=$ | \( 5 a^{3} + 6 a^{2} + 5 a + \left(3 a^{5} + 6 a^{4} + 2 a^{3} + 3 a^{2} + 3 a + 6\right)\cdot 13 + \left(5 a^{5} + 7 a^{4} + 2 a^{3} + 6 a^{2} + 10 a\right)\cdot 13^{2} + \left(4 a^{5} + 3 a^{4} + 5 a^{3} + 9 a + 2\right)\cdot 13^{3} + \left(12 a^{5} + 12 a^{4} + a^{3} + 4 a^{2} + 4\right)\cdot 13^{4} + \left(3 a^{5} + 11 a^{4} + 10 a^{3} + 9 a^{2} + 12 a + 11\right)\cdot 13^{5} + \left(12 a^{5} + 9 a^{4} + 2 a^{3} + 4 a^{2} + 10\right)\cdot 13^{6} + \left(3 a^{5} + 5 a^{3} + a^{2} + 5 a + 11\right)\cdot 13^{7} +O(13^{8})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,7)(2,11)(3,12)(4,8)(5,9)(6,10)$ | $-2$ |
$3$ | $2$ | $(1,4)(2,3)(5,6)(7,8)(9,10)(11,12)$ | $0$ |
$3$ | $2$ | $(1,8)(2,12)(3,11)(4,7)(5,10)(6,9)$ | $0$ |
$1$ | $3$ | $(1,3,5)(2,6,4)(7,12,9)(8,11,10)$ | $-2 \zeta_{3} - 2$ |
$1$ | $3$ | $(1,5,3)(2,4,6)(7,9,12)(8,10,11)$ | $2 \zeta_{3}$ |
$2$ | $3$ | $(2,4,6)(8,10,11)$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(2,6,4)(8,11,10)$ | $-\zeta_{3}$ |
$2$ | $3$ | $(1,5,3)(2,6,4)(7,9,12)(8,11,10)$ | $-1$ |
$1$ | $6$ | $(1,12,5,7,3,9)(2,10,4,11,6,8)$ | $2 \zeta_{3} + 2$ |
$1$ | $6$ | $(1,9,3,7,5,12)(2,8,6,11,4,10)$ | $-2 \zeta_{3}$ |
$2$ | $6$ | $(1,7)(2,8,6,11,4,10)(3,12)(5,9)$ | $-\zeta_{3} - 1$ |
$2$ | $6$ | $(1,7)(2,10,4,11,6,8)(3,12)(5,9)$ | $\zeta_{3}$ |
$2$ | $6$ | $(1,9,3,7,5,12)(2,10,4,11,6,8)$ | $1$ |
$3$ | $6$ | $(1,6,3,4,5,2)(7,10,12,8,9,11)$ | $0$ |
$3$ | $6$ | $(1,2,5,4,3,6)(7,11,9,8,12,10)$ | $0$ |
$3$ | $6$ | $(1,10,3,8,5,11)(2,7,6,12,4,9)$ | $0$ |
$3$ | $6$ | $(1,11,5,8,3,10)(2,9,4,12,6,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.