Properties

Label 2.2e5_5_17.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 2^{5} \cdot 5 \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$2720= 2^{5} \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} - 8 x^{3} + 25 x^{2} - 10 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 3 + \left(34 a + 36\right)\cdot 37 + \left(27 a + 26\right)\cdot 37^{2} + 4 a\cdot 37^{3} + \left(27 a + 25\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 17\cdot 37 + 9\cdot 37^{2} + 23\cdot 37^{3} + 34\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 a + 7 + \left(2 a + 23\right)\cdot 37 + \left(9 a + 30\right)\cdot 37^{2} + \left(32 a + 28\right)\cdot 37^{3} + \left(9 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 31 a + 19 + \left(14 a + 33\right)\cdot 37 + \left(33 a + 9\right)\cdot 37^{2} + \left(35 a + 8\right)\cdot 37^{3} + \left(25 a + 5\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 18 + 12\cdot 37 + 16\cdot 37^{2} + 5\cdot 37^{3} + 29\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 32 + \left(22 a + 24\right)\cdot 37 + \left(3 a + 17\right)\cdot 37^{2} + \left(a + 7\right)\cdot 37^{3} + \left(11 a + 36\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(2,3)(5,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(2,3)(5,6)$ $0$
$3$ $2$ $(1,4)(2,6)(3,5)$ $0$
$2$ $3$ $(1,2,3)(4,5,6)$ $-1$
$2$ $6$ $(1,5,3,4,2,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.