Properties

Label 2.2e5_59.24t22.4
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{5} \cdot 59 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1888= 2^{5} \cdot 59 $
Artin number field: Splitting field of $f= x^{8} + 6 x^{6} - 8 x^{5} - 8 x^{4} + 12 x^{3} - 10 x^{2} - 8 x - 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 2 + \left(14 a + 23\right)\cdot 31 + \left(27 a + 3\right)\cdot 31^{2} + \left(27 a + 11\right)\cdot 31^{3} + \left(4 a + 1\right)\cdot 31^{4} + \left(25 a + 5\right)\cdot 31^{5} + \left(25 a + 16\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 29 + \left(18 a + 14\right)\cdot 31 + \left(8 a + 30\right)\cdot 31^{2} + \left(16 a + 29\right)\cdot 31^{3} + \left(11 a + 3\right)\cdot 31^{4} + \left(26 a + 20\right)\cdot 31^{5} + \left(4 a + 10\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 30 + \left(16 a + 6\right)\cdot 31 + \left(3 a + 13\right)\cdot 31^{2} + \left(3 a + 8\right)\cdot 31^{3} + \left(26 a + 14\right)\cdot 31^{4} + \left(5 a + 19\right)\cdot 31^{5} + \left(5 a + 11\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 4 + 2\cdot 31 + 10\cdot 31^{2} + 5\cdot 31^{3} + 29\cdot 31^{4} + 9\cdot 31^{5} + 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 + 21\cdot 31 + 22\cdot 31^{2} + 31^{3} + 11\cdot 31^{4} + 5\cdot 31^{5} + 14\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 22 + \left(28 a + 13\right)\cdot 31 + \left(16 a + 4\right)\cdot 31^{2} + \left(3 a + 27\right)\cdot 31^{3} + \left(28 a + 15\right)\cdot 31^{4} + \left(18 a + 27\right)\cdot 31^{5} + \left(29 a + 17\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 23 a + 14 + \left(12 a + 12\right)\cdot 31 + \left(22 a + 29\right)\cdot 31^{2} + \left(14 a + 22\right)\cdot 31^{3} + \left(19 a + 10\right)\cdot 31^{4} + \left(4 a + 30\right)\cdot 31^{5} + \left(26 a + 24\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 21 a + 11 + \left(2 a + 29\right)\cdot 31 + \left(14 a + 9\right)\cdot 31^{2} + \left(27 a + 17\right)\cdot 31^{3} + \left(2 a + 6\right)\cdot 31^{4} + \left(12 a + 6\right)\cdot 31^{5} + \left(a + 27\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,6)(2,3,8)$
$(1,8)(2,6)(3,7)$
$(1,4,8,5)(2,3,7,6)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$12$ $2$ $(1,8)(2,6)(3,7)$ $0$ $0$
$8$ $3$ $(1,2,5)(4,8,7)$ $-1$ $-1$
$6$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$ $0$
$8$ $6$ $(1,4,2,8,5,7)(3,6)$ $1$ $1$
$6$ $8$ $(1,7,4,6,8,2,5,3)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,2,4,3,8,7,5,6)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.