Properties

Label 2.2e5_5.8t17.2c1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{5} \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$160= 2^{5} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{4} + 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.5.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 13 + 27\cdot 181 + 151\cdot 181^{2} + 165\cdot 181^{3} + 106\cdot 181^{4} + 35\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 62 + 22\cdot 181 + 172\cdot 181^{2} + 143\cdot 181^{3} + 44\cdot 181^{4} + 40\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 66 + 37\cdot 181 + 46\cdot 181^{2} + 81\cdot 181^{3} + 159\cdot 181^{4} + 52\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 89 + 26\cdot 181 + 149\cdot 181^{2} + 5\cdot 181^{3} + 90\cdot 181^{4} + 85\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 92 + 154\cdot 181 + 31\cdot 181^{2} + 175\cdot 181^{3} + 90\cdot 181^{4} + 95\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 115 + 143\cdot 181 + 134\cdot 181^{2} + 99\cdot 181^{3} + 21\cdot 181^{4} + 128\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 119 + 158\cdot 181 + 8\cdot 181^{2} + 37\cdot 181^{3} + 136\cdot 181^{4} + 140\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 168 + 153\cdot 181 + 29\cdot 181^{2} + 15\cdot 181^{3} + 74\cdot 181^{4} + 145\cdot 181^{5} +O\left(181^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3,7,8,5,6,2)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,8)(3,6)$
$(1,3,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,8)(3,6)$$0$
$4$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$1$$4$$(1,3,8,6)(2,4,7,5)$$-2 \zeta_{4}$
$1$$4$$(1,6,8,3)(2,5,7,4)$$2 \zeta_{4}$
$2$$4$$(1,3,8,6)$$-\zeta_{4} + 1$
$2$$4$$(1,6,8,3)$$\zeta_{4} + 1$
$2$$4$$(1,8)(2,4,7,5)(3,6)$$-\zeta_{4} - 1$
$2$$4$$(1,8)(2,5,7,4)(3,6)$$\zeta_{4} - 1$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$4$$(1,4,8,5)(2,3,7,6)$$0$
$4$$8$$(1,4,3,7,8,5,6,2)$$0$
$4$$8$$(1,7,6,4,8,2,3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.