Properties

Label 2.160.8t17.a.a
Dimension $2$
Group $C_4\wr C_2$
Conductor $160$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_4\wr C_2$
Conductor: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Artin stem field: Galois closure of 8.0.8192000.1
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Determinant: 1.5.4t1.a.b
Projective image: $D_4$
Projective stem field: Galois closure of 4.2.2000.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{4} + 5 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 13 + 27\cdot 181 + 151\cdot 181^{2} + 165\cdot 181^{3} + 106\cdot 181^{4} + 35\cdot 181^{5} +O(181^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 62 + 22\cdot 181 + 172\cdot 181^{2} + 143\cdot 181^{3} + 44\cdot 181^{4} + 40\cdot 181^{5} +O(181^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 66 + 37\cdot 181 + 46\cdot 181^{2} + 81\cdot 181^{3} + 159\cdot 181^{4} + 52\cdot 181^{5} +O(181^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 89 + 26\cdot 181 + 149\cdot 181^{2} + 5\cdot 181^{3} + 90\cdot 181^{4} + 85\cdot 181^{5} +O(181^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 92 + 154\cdot 181 + 31\cdot 181^{2} + 175\cdot 181^{3} + 90\cdot 181^{4} + 95\cdot 181^{5} +O(181^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 115 + 143\cdot 181 + 134\cdot 181^{2} + 99\cdot 181^{3} + 21\cdot 181^{4} + 128\cdot 181^{5} +O(181^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 119 + 158\cdot 181 + 8\cdot 181^{2} + 37\cdot 181^{3} + 136\cdot 181^{4} + 140\cdot 181^{5} +O(181^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 168 + 153\cdot 181 + 29\cdot 181^{2} + 15\cdot 181^{3} + 74\cdot 181^{4} + 145\cdot 181^{5} +O(181^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3,7,8,5,6,2)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,8)(3,6)$
$(1,3,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,8)(3,6)$$0$
$4$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$1$$4$$(1,3,8,6)(2,4,7,5)$$-2 \zeta_{4}$
$1$$4$$(1,6,8,3)(2,5,7,4)$$2 \zeta_{4}$
$2$$4$$(1,3,8,6)$$-\zeta_{4} + 1$
$2$$4$$(1,6,8,3)$$\zeta_{4} + 1$
$2$$4$$(1,8)(2,4,7,5)(3,6)$$-\zeta_{4} - 1$
$2$$4$$(1,8)(2,5,7,4)(3,6)$$\zeta_{4} - 1$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$4$$(1,4,8,5)(2,3,7,6)$$0$
$4$$8$$(1,4,3,7,8,5,6,2)$$0$
$4$$8$$(1,7,6,4,8,2,3,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.