Properties

Label 2.2e5_5.8t17.1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 2^{5} \cdot 5 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$160= 2^{5} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} - 12 x^{5} + 4 x^{4} + 8 x^{3} + 14 x^{2} - 8 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 4 + 2\cdot 181 + 87\cdot 181^{2} + 99\cdot 181^{3} + 14\cdot 181^{4} + 4\cdot 181^{5} + 154\cdot 181^{6} + 101\cdot 181^{7} +O\left(181^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 35 + 110\cdot 181 + 153\cdot 181^{2} + 170\cdot 181^{3} + 130\cdot 181^{4} + 35\cdot 181^{5} + 142\cdot 181^{6} + 134\cdot 181^{7} +O\left(181^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 55 + 41\cdot 181 + 54\cdot 181^{2} + 173\cdot 181^{3} + 83\cdot 181^{4} + 45\cdot 181^{5} + 121\cdot 181^{6} + 31\cdot 181^{7} +O\left(181^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 57 + 178\cdot 181 + 85\cdot 181^{2} + 125\cdot 181^{3} + 95\cdot 181^{4} + 112\cdot 181^{5} + 150\cdot 181^{6} + 170\cdot 181^{7} +O\left(181^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 111 + 74\cdot 181 + 147\cdot 181^{2} + 45\cdot 181^{3} + 166\cdot 181^{4} + 96\cdot 181^{5} + 125\cdot 181^{6} + 140\cdot 181^{7} +O\left(181^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 125 + 36\cdot 181 + 46\cdot 181^{2} + 87\cdot 181^{3} + 121\cdot 181^{4} + 68\cdot 181^{5} + 78\cdot 181^{6} + 153\cdot 181^{7} +O\left(181^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 163 + 143\cdot 181 + 51\cdot 181^{2} + 71\cdot 181^{3} + 181^{4} + 164\cdot 181^{5} + 86\cdot 181^{6} + 32\cdot 181^{7} +O\left(181^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 174 + 136\cdot 181 + 97\cdot 181^{2} + 131\cdot 181^{3} + 109\cdot 181^{4} + 15\cdot 181^{5} + 46\cdot 181^{6} + 139\cdot 181^{7} +O\left(181^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,8)(3,4)(6,7)$
$(3,4)(6,7)$
$(1,8,5,2)(3,7,4,6)$
$(3,6,4,7)$
$(1,3)(2,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,8)(3,4)(6,7)$ $-2$ $-2$
$2$ $2$ $(3,4)(6,7)$ $0$ $0$
$4$ $2$ $(1,3)(2,6)(4,5)(7,8)$ $0$ $0$
$1$ $4$ $(1,8,5,2)(3,7,4,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,2,5,8)(3,6,4,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(3,6,4,7)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(3,7,4,6)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(1,5)(2,8)(3,7,4,6)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(1,5)(2,8)(3,6,4,7)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,8,5,2)(3,6,4,7)$ $0$ $0$
$4$ $4$ $(1,4,5,3)(2,7,8,6)$ $0$ $0$
$4$ $8$ $(1,6,2,4,5,7,8,3)$ $0$ $0$
$4$ $8$ $(1,4,8,6,5,3,2,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.