Properties

Label 2.2e5_3e3.6t3.3c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{5} \cdot 3^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$864= 2^{5} \cdot 3^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{2} - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e3_3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 8 + \left(4 a + 15\right)\cdot 19 + \left(7 a + 6\right)\cdot 19^{2} + 17 a\cdot 19^{3} + 8\cdot 19^{4} + \left(7 a + 10\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 + 2\cdot 19 + 15\cdot 19^{2} + 3\cdot 19^{3} + 12\cdot 19^{4} + 12\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 9 + \left(14 a + 18\right)\cdot 19 + \left(11 a + 9\right)\cdot 19^{2} + \left(a + 10\right)\cdot 19^{3} + \left(18 a + 10\right)\cdot 19^{4} + \left(11 a + 16\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 11 + \left(14 a + 3\right)\cdot 19 + \left(11 a + 12\right)\cdot 19^{2} + \left(a + 18\right)\cdot 19^{3} + \left(18 a + 10\right)\cdot 19^{4} + \left(11 a + 8\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 + 16\cdot 19 + 3\cdot 19^{2} + 15\cdot 19^{3} + 6\cdot 19^{4} + 6\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 6 }$ $=$ $ a + 10 + 4 a\cdot 19 + \left(7 a + 9\right)\cdot 19^{2} + \left(17 a + 8\right)\cdot 19^{3} + 8\cdot 19^{4} + \left(7 a + 2\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(2,3)(5,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(2,3)(5,6)$$0$
$3$$2$$(1,4)(2,6)(3,5)$$0$
$2$$3$$(1,2,3)(4,5,6)$$-1$
$2$$6$$(1,5,3,4,2,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.