Properties

Label 2.2e5_3e2_7e2.8t8.2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{5} \cdot 3^{2} \cdot 7^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$14112= 2^{5} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 10 x^{6} - 16 x^{5} - 56 x^{4} + 92 x^{3} - 446 x^{2} - 652 x - 227 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 13\cdot 157 + 37\cdot 157^{2} + 141\cdot 157^{3} + 102\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 5\cdot 157 + 60\cdot 157^{2} + 54\cdot 157^{3} + 54\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 7\cdot 157 + 146\cdot 157^{2} + 109\cdot 157^{3} + 23\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 + 137\cdot 157 + 138\cdot 157^{2} + 2\cdot 157^{3} + 108\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 65 + 47\cdot 157 + 109\cdot 157^{2} + 41\cdot 157^{3} + 126\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 134 + 108\cdot 157 + 134\cdot 157^{2} + 46\cdot 157^{3} + 72\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 138 + 121\cdot 157 + 76\cdot 157^{2} + 2\cdot 157^{3} + 56\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 153 + 29\cdot 157 + 82\cdot 157^{2} + 71\cdot 157^{3} + 84\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,8)(3,7,4,5)$
$(1,6)(2,8)(3,4)(5,7)$
$(1,4,8,7,6,3,2,5)$
$(1,5,6,7)(2,4,8,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,8)(3,4)(5,7)$ $-2$ $-2$
$4$ $2$ $(1,2)(5,7)(6,8)$ $0$ $0$
$2$ $4$ $(1,8,6,2)(3,5,4,7)$ $0$ $0$
$4$ $4$ $(1,7,6,5)(2,3,8,4)$ $0$ $0$
$2$ $8$ $(1,4,8,7,6,3,2,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,3,8,5,6,4,2,7)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.