Properties

Label 2.2e5_3e2_23.8t8.2c2
Dimension 2
Group $QD_{16}$
Conductor $ 2^{5} \cdot 3^{2} \cdot 23 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$6624= 2^{5} \cdot 3^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 10 x^{6} + 8 x^{5} - 32 x^{4} - 28 x^{3} + 202 x^{2} + 284 x + 157 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Even
Determinant: 1.3_23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 227 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 25 + 179\cdot 227 + 117\cdot 227^{2} + 203\cdot 227^{3} + 140\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 46 + 207\cdot 227 + 41\cdot 227^{2} + 82\cdot 227^{3} + 112\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 86 + 129\cdot 227 + 194\cdot 227^{2} + 146\cdot 227^{3} + 173\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 112 + 217\cdot 227 + 220\cdot 227^{2} + 166\cdot 227^{3} + 151\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 120 + 77\cdot 227 + 161\cdot 227^{2} + 128\cdot 227^{3} + 151\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 131 + 4\cdot 227 + 132\cdot 227^{2} + 183\cdot 227^{3} + 130\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 188 + 52\cdot 227 + 210\cdot 227^{2} + 126\cdot 227^{3} + 30\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 204 + 39\cdot 227 + 56\cdot 227^{2} + 96\cdot 227^{3} + 16\cdot 227^{4} +O\left(227^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,4,8)(2,6,3,7)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,6,4,7)(2,8,3,5)$
$(1,7)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$4$$2$$(1,7)(2,3)(4,6)$$0$
$2$$4$$(1,6,4,7)(2,8,3,5)$$0$
$4$$4$$(1,5,4,8)(2,6,3,7)$$0$
$2$$8$$(1,5,6,2,4,8,7,3)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,8,6,3,4,5,7,2)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.